14 research outputs found

    Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3

    Get PDF
    The Notch and transforming growth factor-β (TGF-β) signaling pathways play critical roles in the control of cell fate during metazoan development. However, mechanisms of cross-talk and signal integration between the two systems are unknown. Here, we demonstrate a functional synergism between Notch and TGF-β signaling in the regulation of Hes-1, a direct target of the Notch pathway. Activation of TGF-β signaling up-regulated Hes-1 expression in vitro and in vivo. This effect was abrogated in myogenic cells by a dominant-negative form of CSL, an essential DNA-binding component of the Notch pathway. TGF-β regulated transcription from the Hes-1 promoter in a Notch-dependent manner, and the intracellular domain of Notch1 (NICD) cooperated synergistically with Smad3, an intracellular transducer of TGF-β signals, to induce the activation of synthetic promoters containing multimerized CSL- or Smad3-binding sites. NICD and Smad3 were shown to interact directly, both in vitro and in cells, in a ligand-dependent manner, and Smad3 could be recruited to CSL-binding sites on DNA in the presence of CSL and NICD. These findings indicate that Notch and TGF-β signals are integrated by direct protein–protein interactions between the signal-transducing intracellular elements from both pathways

    Induction of CD137 expression by Epstein-Barr Virus facilitates immune escape of infected cells

    No full text
    International Congress of Immunology (ICI)46690-69

    Induction of CD137 expression by viral genes reduces T cell costimulation

    No full text
    10.1002/jcp.28710JOURNAL OF CELLULAR PHYSIOLOGY2341121076-2108

    Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq

    Get PDF
    Our understanding of the development and maintenance of tissues has been greatly aided by large-scale gene expression analysis. However, tissues are invariably complex, and expression analysis of a tissue confounds the true expression patterns of its constituent cell types. Here we describe a novel strategy to access such complex samples. Single-cell RNA-seq expression profiles were generated, and clustered to form a two-dimensional cell map onto which expression data were projected. The resulting cell map integrates three levels of organization: the whole population of cells, the functionally distinct subpopulations it contains, and the single cells themselves—all without need for known markers to classify cell types. The feasibility of the strategy was demonstrated by analyzing the transcriptomes of 85 single cells of two distinct types. We believe this strategy will enable the unbiased discovery and analysis of naturally occurring cell types during development, adult physiology, and disease

    Differential regulation of mouse pancreatic islet insulin secretion and Smad proteins by activin ligands

    No full text
    International audienceGlucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is regulated by paracrine factors, the identity and mechanisms of action of which are incompletely understood. Activins are expressed in pancreatic islets and have been implicated in the regulation of GSIS. Activins A and B signal through a common set of intracellular components, but it is unclear whether they display similar or distinct functions in glucose homeostasis

    CD137 negatively affects "browning" of white adipose tissue during cold exposure

    No full text
    10.1074/jbc.AC119.011795JOURNAL OF BIOLOGICAL CHEMISTRY29572034-204
    corecore