63 research outputs found

    Pragmatic, open-label, single-center, randomized, phase II clinical trial to evaluate the efficacy and safety of methylprednisolone pulses and tacrolimus in patients with severe pneumonia secondary to COVID-19: the TACROVID trial protocol

    Get PDF
    Introduction: Some COVID-19 patients evolve to severe lung injury and systemic hyperinflammatory syndrome triggered by both the coronavirus infection and the subsequent host-immune response. Accordingly, the use of immunomodulatory agents has been suggested but still remains controversial. Our working hypothesis is that methylprednisolone pulses and tacrolimus may be an effective and safety drug combination for treating severe COVID-19 patients. Methods: and analysis: TACROVID is a randomized, open-label, single-center, phase II trial to evaluate the ef- ficacy and safety of methylprednisolone pulses and tacrolimus plus standard of care (SoC) versus SoC alone, in patients at advanced stage of COVID-19 disease with lung injury and systemic hyperinflammatory response. Patients are randomly assigned (1:1) to one of two arms (42 patients in each group). The primary aim is to assess the time to clinical stability after initiating randomization. Clinical stability is defined as body temperature≤37.5 ◦C, and PaO2/FiO2 > 400 and/or SatO2/FiO2 > 300, and respiratory rate ≤24 rpm; for 48 consecutive hours. Discussion: Methylprednisolone and tacrolimus might be beneficial to treat those COVID-19 patients progressing into severe pulmonary failure and systemic hyperinflammatory syndrome. The rationale for its use is the fast effect of methylprednisolone pulses and the ability of tacrolimus to inhibit both the CoV-2 replication and the secondary cytokine storm. Interestingly, both drugs are low-cost and can be manufactured on a large scale; thus, if effective and safe, a large number of patients could be treated in developed and developing countries

    Combining targeted panel-based resequencing and copy-number variation analysis for the diagnosis of inherited syndromic retinopathies and associated ciliopathies

    Get PDF
    Inherited syndromic retinopathies are a highly heterogeneous group of diseases that involve retinal anomalies and systemic manifestations. They include retinal ciliopathies, other well-defined clinical syndromes presenting with retinal alterations and cases of non-specific multisystemic diseases. The heterogeneity of these conditions makes molecular and clinical characterization of patients challenging in daily clinical practice. We explored the capacity of targeted resequencing and copy-number variation analysis to improve diagnosis of a heterogeneous cohort of 47 patients mainly comprising atypical cases that did not clearly fit a specific clinical diagnosis. Thirty-three likely pathogenic variants were identified in 18 genes (ABCC6, ALMS1, BBS1, BBS2, BBS12, CEP41, CEP290, IFT172, IFT27, MKKS, MYO7A, OTX2, PDZD7, PEX1, RPGRIP1, USH2A, VPS13B, and WDPCP). Molecular findings and additional clinical reassessments made it possible to accurately characterize 14 probands (30% of the total). Notably, clinical refinement of complex phenotypes was achieved in 4 cases, including 2 de novo OTX2-related syndromes, a novel phenotypic association for the ciliary CEP41 gene, and the co-existence of biallelic USH2A variants and a Koolen-de-Vries syndrome–related 17q21.31 microdeletion. We demonstrate that combining next-generation sequencing and CNV analysis is a comprehensive and useful approach to unravel the extensive phenotypic and genotypic complexity of inherited syndromic retinopathiesFEDER (Fondo Europeo de Desarrollo Regional) | Ref. PI016/00425Instituto de Salud Carlos III | Ref. PT13/0010/001
    corecore