505 research outputs found

    Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    Get PDF
    In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC), anhydrosugars, Cl−, NO[subscript 3]−, and 20 metals from 10 cooking fires, four garbage fires, three brick making kilns, three charcoal making kilns, and two crop residue fires. Global biofuel use has been estimated at over 2600 Tg/y. With several simple case studies we show that cooking fires can be a major, or the major, source of several gases and fine particles in developing countries. Insulated cook stoves with chimneys were earlier shown to reduce indoor air pollution and the fuel use per cooking task. We confirm that they also reduce the emissions of VOC pollutants per mass of fuel burned by about half. We did not detect HCN emissions from cooking fires in Mexico or Africa. Thus, if regional source attribution is based on HCN emissions typical for other types of biomass burning (BB), then biofuel use and total BB will be underestimated in much of the developing world. This is also significant because cooking fires are not detected from space. We estimate that ~2000 Tg/y of garbage are generated globally and about half may be burned, making this a commonly overlooked major global source of emissions. We estimate a fine particle emission factor (EFPM2.5) for garbage burning of ~10.5±8.8 g/kg, which is in reasonable agreement with very limited previous work. We observe large HCl emission factors in the range 2–10 g/kg. Consideration of the Cl content of the global waste stream suggests that garbage burning may generate as much as 6–9 Tg/yr of HCl, which would make it a major source of this compound. HCl generated by garbage burning in dry environments may have a relatively greater atmospheric impact than HCl generated in humid areas. Garbage burning PM[subscript 2.5] was found to contain levoglucosan and K in concentrations similar to those for biomass burning, so it could be a source of interference in some areas when using these tracers to estimate BB. Galactosan was the anhydrosugar most closely correlated with BB in this study. Fine particle antimony (Sb) shows initial promise as a garbage burning tracer and suggests that this source could contribute a significant amount of the PM2.5 in the Mexico City metropolitan area. The fuel consumption and emissions due to industrial biofuel use are difficult to characterize regionally. This is partly because of the diverse range of fuels used and the very small profit margins of typical micro-enterprises. Brick making kilns produced low total EFPM[subscript 2.5] (~1.6 g/kg), but very high EC/OC ratios (6.72). Previous literature on brick kilns is scarce but does document some severe local impacts. Coupling data from Mexico, Brazil, and Zambia, we find that charcoal making kilns can exhibit an 8-fold increase in VOC/CO over their approximately one-week lifetime. Acetic acid emission factors for charcoal kilns were much higher in Mexico than elsewhere. Our dirt charcoal kiln EFPM2.5 emission factor was ~1.1 g/kg, which is lower than previous recommendations intended for all types of kilns. We speculate that some PM[subscript 2.5] is scavenged in the walls of dirt kilns.National Science Foundation (U.S.) (Grant ATM-0513055)United States. Dept. of Defense (Strategic Environmental Research and Development Program (SERDP))United States. Dept. of Agriculture (Agreement 07-JV-11221649-060)United States. Dept. of Agriculture (Agreement 08-JV-11272166-039)United States. Forest ServiceRocky Mountain Research Station (Fort Collins, Colo.)Pacific Southwest Research Statio

    Estado de la investigación sobre emisiones de metano entérico y estrategias de mitigación en América Latina

    Get PDF
    La medición de la emisión de gases de efecto invernadero es altamente relevante en la evaluación del impacto ambiental de los sistemas agropecuarios. El metano producido por la fermentación entérica de los rumiantes representa una parte importante de todas las emisiones antropogénicas de gases de efecto invernadero en América Latina, donde hay una gran producción de rumiantes. Actualmente, los esfuerzos de los países latinoamericanos están enfocados más en la cuantificación de las emisiones de metano y el cálculo de los inventarios nacionales que en la mitigación. En este ensayo se exponen los datos obtenido hasta ahora en diferentes experimentos, en término de determinación in vivo de las emisiones de metano en los países de América latina. Esto, con la intención de discutir y dar a conocer el panorama actual y los avances de la zona en cuanto a la medición del impacto ambiental de este gas y el desarrollo de estrategias para reducir su producción por los rumiantes. Finalmente se marcan los retos que se enfrenta en el futuro la investigación sobre el tema

    Eddy covariance flux measurements of pollutant gases in urban Mexico City

    Get PDF
    Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric chemistry and the role that cities play in regional and global chemical cycles. As part of the MCMA-2003 study, we demonstrated the feasibility of using eddy covariance techniques to measure fluxes of selected volatile organic compounds (VOCs) and CO2 [CO subscript 2] from a residential district of Mexico City (Velasco et al., 2005a, b). During the MILAGRO/MCMA-2006 field campaign, a second flux measurement study was conducted in a different district of Mexico City to corroborate the 2003 flux measurements, to expand the number of species measured, and to obtain additional data for evaluation of the local emissions inventory. Fluxes of CO2 [CO subscript 2] and olefins were measured by the conventional EC technique using an open path CO2 [CO subscript 2] sensor and a Fast Isoprene Sensor calibrated with a propylene standard. In addition, fluxes of toluene, benzene, methanol and C2-benzenes [C subscript 2 - benzenes] were measured using a virtual disjunct EC method with a Proton Transfer Reaction Mass Spectrometer. The flux measurements were analyzed in terms of diurnal patterns and vehicular activity and were compared with the most recent gridded emissions inventory. In both studies, the results showed that the urban surface of Mexico City is a net source of CO2 [CO subscript 2] and VOCs with significant contributions from vehicular traffic. Evaporative emissions from commercial and other anthropogenic activities were significant sources of toluene and methanol. The data show that the emissions inventory is in reasonable agreement with measured olefin and CO2 [CO subscript 2] fluxes, while C2-benzenes [C subscript 2 - benzenes] and toluene emissions from evaporative sources are overestimated in the inventory. It appears that methanol emissions from mobile sources occur, but are not present in the mobile emissions inventory.National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy (Award DE-FG02-05ER63980)Mexico. Comisión Ambiental MetropolitanaMolina Center for Energy and the Environmen

    Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes

    Get PDF
    Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program (BORAQIP) for the Mexicali-Imperial Valley in 2005. We analyze the variability of measured emission ratios for emitted NOx [NO subscript x], CO, specific VOCs, NH3 [NH subscript 3], and some primary fine particle components and properties by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx [NO subscript x] mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were around 20% higher in Mexicali than in Mexico City whereas HCHO and NH3 [NH subscript 3] emission ratios were higher by a factor of 2 in Mexico City than in Mexicali. Acetaldehyde emission ratios did not differ significantly whereas selected aromatics VOCs emissions were similar or smaller in Mexicali. Nitrogen oxides emissions for on-road heavy-duty diesel truck (HDDT) were measured near Austin, Texas, as well as in both Mexican cities, with NOy [NO subscript y] emission ratios in Austin < Mexico City < Mexicali.Mexico. Comisión Ambiental MetropolitanaNational Science Foundation (U.S.) (Grant ATM-0528227)Molina Center for Energy and the EnvironmentUniversity of Texas at AustinLatin American Scholarship Program of American Universitie

    Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    Get PDF
    A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS), and Gas Chromatography-Flame Ionization analysis (GC-FID) of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6), and were in reasonable agreement for toluene, C2-alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430 m distance), and the point measurements collected at 37-m sampling height were best for benzene (r=0.61), and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5). There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios measured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients – horizontal, vertical, or both – in toluene mixing ratios were significant, and up to a factor of 2 despite the fact that all measurements were conducted above roof level. Our analysis highlights a potential problem in defining a VOC sampling strategy that is meaningful for the comparison with photochemical transport models: meaningful measurements require a spatial fetch that is comparable to the grid cell size of models, which is typically a few 10 km2. Long-path DOAS measurements inherently average over a larger spatial scale than point measurements. The spatial representativeness can be further increased if observations are conducted outside the surface roughness sublayer, which might require measurements at altitudes as high as 10 s of metres above roof level.Alexander von Humboldt-Stiftung (Feodor Lynen fellowship)Henry & Camille Dreyfus Foundation (Postdoctral Fellowship in Environmental Chemistry

    Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    Get PDF
    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO)/Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ<0.1 s) and ~75% exhibiting slow evaporation (τ~2.4 min) at the T0 urban supersite and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the compounds generating PbCl+. This is consistent with the evaporation model results. Levels of particulate Pb measured at T0 were similar to previous studies in Mexico City. Pb shows a diurnal cycle with a maximum in the early morning, which is typical of primary urban pollutants. Pb shows correlation with Zn, consistent with previous studies, while the sources of Pb appear to be at least partially disjoint from those of particulate chloride. Back trajectory analysis of the T0 Pb data suggests the presence of sources inside the urban area SSW and N of T0, with different chemical forms of Pb being associated with different source locations. High signals due to particulate lead were also detected in the PEMEX site; again, no correlation between Pb and chloride plumes was observed, suggesting mostly different sources for both species.National Science Foundation (U.S.) (grant ATM-0449815)National Science Foundation (U.S.) (grant ATM- 0528634)National Science Foundation (U.S.) (grant ATM-0810950)National Science Foundation (U.S.) (grant ATM-0528227)United States. Dept. of Energy (BER/ASP grant DE-FG02-05-ER63981)United States. Dept. of Energy (BER/ASP grant DE-FG02-05-ER63980)Comision Ambiental Metropolitana (Mexico)United States. National Oceanic and Atmospheric Administration/OGP (grant NA08OAR4310565

    Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Get PDF
    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx) [(NO subscript x)], benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5) [(PM subscript 2.5)], and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx [NO subscript x] and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx [NO subscript x], 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5 [PM subscript 2.5], and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx [NO subscript x] and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx [NO subscript x] and higher for VOCs. For NOx [NO subscript x], the fuel-based estimates are lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory. While conclusions regarding the inventory should be interpreted with care because of the small sample size, 3.5 h of driving, the discrepancies with the official inventory agree with those reported in other studies.National Science Foundation (U.S.) (Grant ATM-0528170)National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy (Grant DE-FG02-05ER63982)United States. National Aeronautics and Space AdministrationMolina Center for Energy and the Environmen
    corecore