163 research outputs found
Osteoarticular pain: therapeutic approach by paradigms
Osteoarticular pain is a common condition in the adult population. It is a nociceptive pain modulated by different factors, and it is one of the major symptoms that force patients to seek medical advice. Since osteoarticular pain has a complex pathophysiology and it is not a linear condition, we propose in this paper an original approach to osteoarticular pain by paradigms, where a paradigm refers to a framework of concepts, results, and procedures within which subsequent work is structured. The paradigm presented is a conceptual tool that could help clinicians to choose the correct therapy considering both pain characteristics and clinical features
IgG4 related disease in elderly: A case report
IgG4-related systemic disease (IgG4-RSD) is an emerging autoimmune disorder that may affect several organs, with signs of organ fibrosis, storiform masses for hystopathological plasmacellular infiltration and plasmatic elevation of IgG4. This clinical condition frequently occurs in the sixth decade and may be considered an autoimmunity of the elderly; the disease may have a smouldering course with frequent misdiagnosis for the co-occurrence of comorbidity and clinical complexity. The present case report describes the clinical case of an 81 years old woman admitted to the geriatric ward for remittent fever and functional decline. The past clinical history reported an isolated CT scan suggestive of retroperitoneal fibrosis of unknown origin with and a drug regimen that included chronic corticosteroids (prednisone 5 mg oad). The in hospital diagnostic workout demonstrated the presence of a thoracic aneurysm. Several possible diagnoses among inflammatory, autoimmune (connective tissue disease, vasculitis, sarcoidosis, amyloidosis), infectious (mycotic) or neoplastic conditions were ruled out, as well as any drug association with higher risk of retroperitoneal fibrosis. Thus, the clinical hypothesis of an IgG4 chronic periaortitis was formulated due to the co-occurrence of all the three major components: the presence of a retroperitoneal fibrosis, IgG4 related abdominal aortitis and peryaneurysmal fibrosis. Patient\u2019s comorbidity did not allow performing the histological analysis. The present clinical case is original and adds knowledge to the 76 cases of thoracic aortitis due to IgG4 systemic disease out of the 3482 cases of disease reported so far. Further clinical investigation is needed to provide a homogeneous diagnostic workout for tailored early therapeutic intervention on the single geriatric patient. Moreover, a growing awareness of the disease is needed, especially in geriatrics, to providing a better standard of care and to improving the disease clinical knowledge and managemen
Structured self-monitoring of blood glucose is associated with more appropriate therapeutic interventions than unstructured self-monitoring: A novel analysis of data from the PRISMA trial
Aims: To investigate the relationship between single therapeutic interventions and indicators of glycemic control in the PRISMA trial, a large study comparing the effects of intensive structured SMBG (ISM) vs. active control (AC) in non-insulin-treated type 2 diabetes (T2D). Methods: Information was collected at four time points, corresponding to months 3, 6, 9, and 12 and visits 2, 3, 4, and 5, respectively. Data on therapeutic interventions, HbA1c levels and the number of hypoglycemic episodes at each visit were analyzed. Results: Intensification of drug therapy occurred in 20.3% vs. 15.6%, and no change in 71.8% vs. 78.7% of visits for the ISM and AC groups, respectively. On the other hand, de-intensification and redistribution of drugs and/or drug dose occurred in a similar proportion of visits. Intensification of drug therapy in both groups was associated with significant reductions in HbA1c vs. the previous visit, while de-intensification of therapy led to a significant increase in HbA1c in the AC group only. Conclusions. Our data strongly support that structured SMBG has clinical value in reducing HbA1c in non-insulin-treated T2D and suggest that this clinical benefit may be mediated by more appropriate and timely changes in drug therapy
Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles
Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle
Clinical use of a 180-day implantable glucose sensor improves glycated haemoglobin and time in range in patients with type 1 diabetes
Aims: This real-world study evaluated the changes in glycated haemoglobin (HbA1c) and continuous glucose monitoring (CGM) metrics associated with use of the implantable 180-day Eversense CGM System (Eversense) in patients with type 1 diabetes. Materials and methods: This was a prospective, multicentre, observational study among adult participants aged ≥18 years with type 1 diabetes across seven diabetes-care centres in Italy who had Eversense inserted for the first time. HbA1c was measured at baseline and at 180 days. Changes in time in range [TIR (glucose 70–180 mg/dL)], time above range [TAR (glucose >180 mg/dL)], time below range [TBR (glucose <70 mg/dL)] and glycaemic variability were also assessed. Data were also analysed by previous CGM use and by mode of insulin delivery. Results: One-hundred patients were enrolled (mean age 36 ± 12 years, mean baseline HbA1c 7.4 ± 0.92% [57 ± 10 mmol/mol]). Fifty-six per cent of patients were users of the continuous subcutaneous insulin infusion pump and 45% were previous users of CGM. HbA1c significantly decreased in patients after 180 days of sensor wear (−0.43% ± 0.69%, 5 ± 8 mmol/mol, P < 0.0001). As expected, CGM-naïve patients achieved the greatest reduction in HbA1c (−0.74% ± 0.48%, 8 ± 5 mmol/mol). TIR significantly increased and TAR and mean daily sensor glucose significantly decreased while TBR did not change after 180 days of sensor wear. Conclusions: Real-world clinical use of the Eversense CGM System for 180 days was associated with significant improvements in HbA1c and CGM metrics among adults with type 1 diabetes. The study is registered on clinicaltrials.gov (NCT04160156)
Samhd1 phosphorylation and cytoplasmic relocalization after human cytomegalovirus infection limits its antiviral activity
SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities
Reversal of <i>MYB </i>-dependent suppression of <i>MAFB </i>expression overrides leukaemia phenotype in MLL-rearranged AML
Abstract The transcription factor MYB plays a pivotal role in haematopoietic homoeostasis and its aberrant expression is involved in the genesis and maintenance of acute myeloid leukaemia (AML). We have previously demonstrated that not all AML subtypes display the same dependency on MYB expression and that such variability is dictated by the nature of the driver mutation. However, whether this difference in MYB dependency is a general trend in AML remains to be further elucidated. Here, we investigate the role of MYB in human leukaemia by performing siRNA-mediated knock-down in cell line models of AML with different driver lesions. We show that the characteristic reduction in proliferation and the concomitant induction of myeloid differentiation that is observed in MLL-rearranged and t(8;21) leukaemias upon MYB suppression is not seen in AML cells with a complex karyotype. Transcriptome analyses revealed that MYB ablation produces consensual increase of MAFB expression in MYB-dependent cells and, interestingly, the ectopic expression of MAFB could phenocopy the effect of MYB suppression. Accordingly, in silico stratification analyses of molecular data from AML patients revealed a reciprocal relationship between MYB and MAFB expression, highlighting a novel biological interconnection between these two factors in AML and supporting new rationales of MAFB targeting in MLL-rearranged leukaemias
Lipid Raft-Dependent FcεRI Ubiquitination Regulates Receptor Endocytosis through the Action of Ubiquitin Binding Adaptors
The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI) expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment
- …