17 research outputs found

    CELLULAR PATHWAY DEREGULATION AND POTENTIAL TARGETED THERAPY FOR ADULT T-CELL LEUKEMIA

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of Adult T-cell Leukemia (ATL), a lymphoproliferative disorder with a very poor prognosis. While approximatively 5% of individuals infected with HTLV-1 develop ATL within twenty years of first infection, the molecular mechanism that the virus uses to induce ATL is not entirely understood. microRNAs are posttranscriptional regulators involved in a wide range of biological processes. Based on biological functions, alteration of their expression can potentially contribute to tumor initiation and progression. The purpose of this thesis is to study changes in miRNA expression and their role in the deregulation of cellular pathways essential in HTLV-1-transformed and ATL cells. Moreover, the absence of an effective treatment for patients led to investigation of potential therapeutic strategies for ATL. Since previous findings show that DNA repair is impaired in HTLV-1-transformed cells, this thesis is focused on targeting DNA repair as a new therapeutic option in ATL. More specifically, the aim is the study of antiproliferative effects and cytotoxicity of PARP and helicase inhibitors in HTLV-1-transformed and ATL cells

    STAT1: A Novel Target of miR-150 and miR-223 Is Involved in the Proliferation of HTLV-I–Transformed and ATL Cells

    Get PDF
    AbstractWe have previously reported on the deregulation of cellular microRNAs involved in hematopoiesis and inflammation in human T-cell lymphotropic virus type 1 (HTLV-I)–transformed cells. In this study, we demonstrate that miR-150 and miR-223 specifically target the signal transducer and activator of transcription 1 (STAT1) 3′ untranslated region, reducing STAT1 expression and dampening STAT1-dependent signaling in human T cells. The effects of miR-150 and miR-223 on endogenous STAT1 were confirmed using inducible cell lines. Our studies also showed that miR-150 expression is upregulated by interleukin-2 signaling in adult T cell leukemia/lymphoma (ATL) cells. HTLV-I–transformed and ATL-derived cells have reduced levels of miR150 and miR223 expression, which coincide with increased STAT1 expression and STAT1-dependent signaling. Knockdown of STAT1 by short hairpin RNA demonstrated that the constitutive activation of STAT1 is required for the continuous proliferation of HTLV-I–transformed cells. Our studies further demonstrate that increased expression of STAT1 in ATL cells is associated with higher levels of major histocompatibility complex class I expression. Previous studies have demonstrated that the pressure exerted by natural killer (NK) cells in vivo can edit leukemic tumor cells by forcing an increased expression of major histocompatibility complex class I to escape immune clearance. STAT1-expressing tumor cells produce more aggressive tumors because they cannot be eliminated by NK cells. Our results suggest that therapeutic approaches using combined targeting of STAT1 and MHC class I may be an effective approach to activate NK cell–mediated clearance of ATL tumor cells

    Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background HTLV-I is associated with the development of an aggressive form of lymphocytic leukemia known as adult T-cell leukemia/lymphoma (ATLL). A major obstacle for effective treatment of ATLL resides in the genetic diversity of tumor cells and their ability to acquire resistance to chemotherapy regimens. As a result, most patients relapse and current therapeutic approaches still have limited long-term survival benefits. Hence, the development of novel approaches is greatly needed. Methods In this study, we found that a small molecule inhibitor of poly (ADP-ribose) polymerase (PARP), PJ-34, is very effective in activating S/G2M cell cycle checkpoints, resulting in permanent cell cycle arrest and reactivation of p53 transcription functions and caspase-3-dependent apoptosis of HTLV-I-transformed and patient-derived ATLL tumor cells. We also found that HTLV-I-transformed MT-2 cells are resistant to PJ-34 therapy associated with reduced cleaved caspase-3 activation and increased expression of RelA/p65. Conclusion Since PJ-34 has been tested in clinical trials for the treatment of solid tumors, our results suggest that some ATLL patients may be good candidates to benefit from PJ-34 therapy

    The Emerging Role of miRNAs in HTLV-1 Infection and ATLL Pathogenesis

    No full text
    Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1

    The Emerging Role of miRNAs in HTLV-1 Infection and ATLL Pathogenesis

    No full text
    Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1

    STAT1: A Novel Target of miR-150 and miR-223 Is Involved in the Proliferation of HTLV-I–Transformed and ATL Cells

    Get PDF
    We have previously reported on the deregulation of cellular microRNAs involved in hematopoiesis and inflammation in human T-cell lymphotropic virus type 1 (HTLV-I)–transformed cells. In this study, we demonstrate that miR-150 and miR-223 specifically target the signal transducer and activator of transcription 1 (STAT1) 3′ untranslated region, reducing STAT1 expression and dampening STAT1-dependent signaling in human T cells. The effects of miR-150 and miR-223 on endogenous STAT1 were confirmed using inducible cell lines. Our studies also showed that miR-150 expression is upregulated by interleukin-2 signaling in adult T cell leukemia/lymphoma (ATL) cells. HTLV-I–transformed and ATL-derived cells have reduced levels of miR150 and miR223 expression, which coincide with increased STAT1 expression and STAT1-dependent signaling. Knockdown of STAT1 by short hairpin RNA demonstrated that the constitutive activation of STAT1 is required for the continuous proliferation of HTLV-I–transformed cells. Our studies further demonstrate that increased expression of STAT1 in ATL cells is associated with higher levels of major histocompatibility complex class I expression. Previous studies have demonstrated that the pressure exerted by natural killer (NK) cells in vivo can edit leukemic tumor cells by forcing an increased expression of major histocompatibility complex class I to escape immune clearance. STAT1-expressing tumor cells produce more aggressive tumors because they cannot be eliminated by NK cells. Our results suggest that therapeutic approaches using combined targeting of STAT1 and MHC class I may be an effective approach to activate NK cell–mediated clearance of ATL tumor cells

    JAG1 overexpression contributes to Notch1 signaling and the migration of HTLV-1-transformed ATL cells

    No full text
    Abstract Background HTLV-1 is a retrovirus that infects over 20 million people worldwide and is responsible for the hematopoietic malignancy adult T cell leukemia (ATL). We previously demonstrated that Notch is constitutively activated in ATL cells. Activating genetic mutations were found in Notch; however, Notch signaling was also activated in the absence of genetic mutations suggesting the existence of other mechanisms. Methods We analyzed the expression of Notch receptor ligands in HTLV-I-transformed cells, ATL patient-derived cell lines, and fresh uncultured ATL samples by RT-PCR, FACS, and immunohistochemistry. We then investigated viral and cellular molecular mechanisms regulating expression of JAG1. Finally, using shRNA knock-down and neutralizing antibodies, we investigated the function of JAG1 in ATL cells. Results Here, we report the overexpression of the Notch ligand, JAG1, in freshly uncultured ATL patient samples compared to normal PBMCs. We found that in ATL cells, JAG1 overexpression relies upon the viral protein Tax and cellular miR-124a, STAT3, and NFATc1. Interestingly, our data show that blockade of JAG1 signaling dampens Notch1 downstream signaling and limits cell migration of transformed ATL cells. Conclusions Our results suggest that targeting JAG1 can block Notch1 activation in HTLV-I-transformed cells and represents a new target for immunotherapy in ATL patients

    On Enzyme-Based Anticancer Molecular Dietary Manipulations

    Get PDF
    Evidence from both epidemiological and experimental observations has fuelled the belief that the high consumption of fruits and vegetables rich in nutrients and phytochemicals may help prevent cancer and heart disease in humans. This concept has been drastically simplified from the dietary approaches to the use of single bioactive components both as a single supplement or in functional foods to manipulate xenobiotic metabolism. These procedures, which aim to induce mutagen/carcinogen detoxification or inhibit their bioactivation, fail to take into account the multiple and paradoxical biological outcomes of enzyme modulators that make their effects unpredictable. Here, we show that the idea that the physiological roles of specific catalysts may be easily manipulated by regular long-term administration of isolated nutrients and other chemicals derived from food plants is not viable. In contrast, we claim that the consumption of healthy diets is most likely to reduce mutagenesis and cancer risk, and that both research endeavours and dietary recommendations should be redirected away from single molecules to dietary patterns as a main strategy for public health policy
    corecore