398 research outputs found

    Anisotropic thermodynamics of d-wave superconductors in the vortex state

    Full text link
    We show that the density of states and the thermodynamic properties of a 2D d-wave superconductor in the vortex state with applied magnetic field H\bf H in the plane depend on the angle between H\bf H and the order parameter nodes. Within a semiclassical treatment of the extended quasiparticle states, we obtain fourfold oscillations of the specific heat, measurement of which provides a simple probe of gap symmetry. The frequency dependence of the density of states and the temperature dependence of thermodynamic properties obey different power laws for field in the nodal and anti-nodal direction. The fourfold pattern is changed to twofold when orthorhombicity is considered.Comment: 5 pages, figures included, minor changes, published versio

    Behavior of vortices near twin boundaries in underdoped Ba(Fe1xCox)2As2Ba(Fe_{1-x}Co_{x})_{2}As_{2}

    Full text link
    We use scanning SQUID microscopy to investigate the behavior of vortices in the presence of twin boundaries in the pnictide superconductor Ba(Fe1-xCox)2As2. We show that the vortices avoid pinning on twin boundaries. Individual vortices move in a preferential way when manipulated with the SQUID: they tend to not cross a twin boundary, but rather to move parallel to it. This behavior can be explained by the observation of enhanced superfluid density on twin boundaries in Ba(Fe1-xCox)2As2. The observed repulsion from twin boundaries may be a mechanism for enhanced critical currents observed in twinned samples in pnictides and other superconductors

    Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3_3

    Get PDF
    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-band-gap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3_3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device (SQUID) measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron-scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange

    Magnetic field of an in-plane vortex outside a layered superconductor

    Full text link
    We present the solution to London's equations for the magnetic fields of a vortex oriented parallel to the plane, and normal to a crystal face, of a layered superconductor. These expressions account for flux spreading at the superconducting surface, which can change the apparent size of the vortex along the planes by as much as 30%. We compare these expressions with experimental results.Comment: 13 pages, 5 figure

    The exponential map for the unitary group SU(2,2)

    Get PDF
    In this article we extend our previous results for the orthogonal group, SO(2,4)SO(2,4), to its homomorphic group SU(2,2)SU(2,2). Here we present a closed, finite formula for the exponential of a 4×44\times 4 traceless matrix, which can be viewed as the generator (Lie algebra elements) of the SL(4,C)SL(4,C) group. We apply this result to the SU(2,2)SU(2,2) group, which Lie algebra can be represented by the Dirac matrices, and discuss how the exponential map for SU(2,2)SU(2,2) can be written by means of the Dirac matrices.Comment: 10 page

    Scanning SQUID Susceptometry of a paramagnetic superconductor

    Full text link
    Scanning SQUID susceptometry images the local magnetization and susceptibility of a sample. By accurately modeling the SQUID signal we can determine the physical properties such as the penetration depth and permeability of superconducting samples. We calculate the scanning SQUID susceptometry signal for a superconducting slab of arbitrary thickness with isotropic London penetration depth, on a non-superconducting substrate, where both slab and substrate can have a paramagnetic response that is linear in the applied field. We derive analytical approximations to our general expression in a number of limits. Using our results, we fit experimental susceptibility data as a function of the sample-sensor spacing for three samples: 1) delta-doped SrTiO3, which has a predominantly diamagnetic response, 2) a thin film of LaNiO3, which has a predominantly paramagnetic response, and 3) a two-dimensional electron layer (2-DEL) at a SrTiO3/AlAlO3 interface, which exhibits both types of response. These formulas will allow the determination of the concentrations of paramagnetic spins and superconducting carriers from fits to scanning SQUID susceptibility measurements.Comment: 11 pages, 13 figure

    Upper limit on spontaneous supercurrents in Sr2_2RuO4_4

    Get PDF
    It is widely believed that the perovskite Sr2_2RuO4_4 is an unconventional superconductor with broken time reversal symmetry. It has been predicted that superconductors with broken time reversal symmetry should have spontaneously generated supercurrents at edges and domain walls. We have done careful imaging of the magnetic fields above Sr2_2RuO4_4 single crystals using scanning Hall bar and SQUID microscopies, and see no evidence for such spontaneously generated supercurrents. We use the results from our magnetic imaging to place upper limits on the spontaneously generated supercurrents at edges and domain walls as a function of domain size. For a single domain, this upper limit is below the predicted signal by two orders of magnitude. We speculate on the causes and implications of the lack of large spontaneous supercurrents in this very interesting superconducting system.Comment: 9 page
    corecore