207 research outputs found

    Complete Genome Characterization of Eight Human Parainfluenza Viruses from the Netherlands.

    Get PDF
    We report the complete genome sequences of eight human parainfluenza viruses (HPIV) belonging to Human respirovirus 1 (HPIV-1), Human respirovirus 3 (HPIV-3), Human rubulavirus 2 (HPIV-2), and Human rubulavirus 4 (HPIV-4). The genome sequences were generated using random-primed next-generation sequencing and represent the first HPIV full-genome sequences from the Netherlands

    From more testing to smart testing:data-guided SARS-CoV-2 testing choices, the Netherlands, May to September 2020

    Get PDF
    BACKGROUND: SARS-CoV-2 RT-PCR assays are more sensitive than rapid antigen detection assays (RDT) and can detect viral RNA even after an individual is no longer infectious. RDT can reduce the time to test and the results might better correlate with infectiousness. AIM: We assessed the ability of five RDT to identify infectious COVID-19 cases and systematically recorded the turnaround time of RT-PCR testing. METHODS: Sensitivity of RDT was determined using a serially diluted SARS-CoV-2 stock with known viral RNA concentration. The probability of detecting infectious virus at a given viral load was calculated using logistic regression of viral RNA concentration and matched culture results of 78 specimens from randomly selected non-hospitalised cases. The probability of each RDT to detect infectious cases was calculated as the sum of the projected probabilities for viral isolation success for every viral RNA load found at the time of diagnosis in 1,739 confirmed non-hospitalised COVID-19 cases. RESULTS: The distribution of quantification cycle values and estimated RNA loads for patients reporting to drive-through testing was skewed to high RNA loads. With the most sensitive RDT (Abbott and SD Biosensor), 97.30% (range: 88.65–99.77) of infectious individuals would be detected. This decreased to 92.73% (range: 60.30–99.77) for Coris BioConcept and GenBody, and 75.53% (range: 17.55–99.77) for RapiGEN. Only 32.9% of RT-PCR results were available on the same day as specimen collection. CONCLUSION: The most sensitive RDT detected infectious COVID-19 cases with high sensitivity and may considerably improve containment through more rapid isolation and contact tracing

    A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins

    Get PDF
    AbstractThe Yellow Fever Vaccine 17D (YFV17D) has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) resulting in construction of YFV17D/LASV-GPC recombinant virus. The virus was replication-competent and processed the LASV-GPC in cell cultures. The recombinant replicated poorly in guinea pigs but still elicited specific antibodies against LASV and YFV17D antigens. A single subcutaneous injection of the recombinant vaccine protected strain 13 guinea pigs against fatal Lassa Fever. This study demonstrates the potential to develop an YFV17D-based bivalent vaccine against two viruses that are endemic in the same area of Africa

    Population-based screening in a municipality after a primary school outbreak of the SARSCoV-2 Alpha variant, the Netherlands, December 2020–February 2021

    Get PDF
    An outbreak of SARS-CoV-2 Alpha variant (Pango lineage B.1.1.7) was detected at a primary school (School X) in Lansingerland, the Netherlands, in December 2020. The outbreak was studied retrospectively, and population-based screening was used to assess the extent of virus circulation and decelerate transmission. Cases were SARS-CoV-2 laboratory confirmed and were residents of Lansingerland (November 16(th) 2020 until February 22(th) 2021), or had an epidemiological link with School X or neighbouring schools. The SARS-CoV-2 variant was determined using variant PCR or whole genome sequencing. A questionnaire primarily assessed clinical symptoms. A total of 77 Alpha variant cases were found with an epidemiological link to School X, 16 Alpha variant cases linked to the neighbouring schools, and 146 Alpha variant cases among residents of Lansingerland without a link to the schools. The mean number of self-reported symptoms was not significantly different among Alpha variant infected individuals compared to non-Alpha infected individuals. The secondary attack rate (SAR) among Alpha variant exposed individuals in households was 52% higher compared to non-Alpha variant exposed individuals (p = 0.010), with the mean household age, and mean number of children and adults per household as confounders. Sequence analysis of 60 Alpha variant sequences obtained from cases confirmed virus transmission between School X and neighbouring schools, and showed that multiple introductions of the Alpha variant had already taken place in Lansingerland at the time of the study. The alpha variant caused a large outbreak at both locations of School X, and subsequently spread to neighbouring schools, and households. Population-based screening (together with other public health measures) nearly stopped transmission of the outbreak strain, but did not prevent variant replacement in the Lansingerland municipality

    Female Sex and IL28B, a Synergism for Spontaneous Viral Clearance in Hepatitis C Virus (HCV) Seroconverters from a Community-Based Cohort

    Get PDF
    BACKGROUND & AIMS: Since acute hepatitis C virus (HCV) infection is often asymptomatic, it is difficult to examine the rate and determinants of spontaneous clearance. Consequently, these studies are subject to bias, which can potentially lead to biased rates of viral clearance and risk estimates. We evaluated determinants of spontaneous HCV clearance among HCV seroconverters identified in a unique community-based cohort. METHODS: Subjects were 106 drug users with documented dates of HCV seroconversion from the Amsterdam Cohort Study. Logistic regression was used to examine sociodemographic, behavioral, clinical, viral and host determinants, measured around acute infection, of HCV clearance. RESULTS: The spontaneous viral clearance rate was 33.0% (95% confidence interval (CI) 24.2-42.8). In univariate analyses female sex and fever were significantly associated with spontaneous clearance. The favorable genotypes for rs12979860 (CC) and rs8099917 (TT) were associated with spontaneous clearance, although borderline significant. In multivariate analysis, females with the favorable genotype for rs12979860 (CC) had an increased odds to spontaneously clear HCV infection (adjusted OR 6.62, 95% 2.69-26.13), whereas females with the unfavorable genotype were as likely as men with the favorable and unfavorable genotype to clear HCV. Chronic Hepatitis B infection and absence of HIV coinfection around HCV seroconversion also favor HCV clearance. CONCLUSIONS: This study shows that co-infection with HIV and HBV and genetic variation in the IL28B region play an important role in spontaneous clearance of HCV. Our findings suggest a possible synergistic interaction between female sex and IL28B in spontaneous clearance of HCV

    High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment

    Get PDF
    A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.</p

    High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment

    Get PDF
    A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.</p

    Unexplained diarrhoea in HIV-1 infected individuals

    Get PDF
    Background: Gastrointestinal symptoms, in particular diarrhoea, are common in non-treated HIV-1 infected individuals. Although various enteric pathogens have been implicated, the aetiology of diarrhoea remains unexplained in a large proportion of HIV-1 infected patients. Our aim is to identify the cause of diarrhoea for patients that remain negative in routine diagnostics. Methods: In this study stool samples of 196 HIV-1 infected persons, including 29 persons with diarrhoea, were examined for enteropathogens and HIV-1. A search for unknown and unexpected viruses was performed using virus discovery cDNA-AFLP combined with Roche-454 sequencing (VIDISCA-454). Results: HIV-1 RNA was detected in stool of 19 patients with diarrhoea (66%) compared to 75 patients (45%) without diarrhoea. In 19 of the 29 diarrhoea cases a known enteropathogen could be identified (66%). Next to these known causative agents, a range of recently identified viruses was identified via VIDISCA-454: cosavirus, Aichi virus, human gyrovirus, and non-A non-B hepatitis virus. Moreover, a novel virus was detected which was named immunodeficiency-associated stool virus (IASvirus). However, PCR based screening for these viruses showed that none of these novel viruses was associated with diarrhoea. Notably, among the 34% enteropathogen-negative cases, HIV-1 RNA shedding in stool was more frequently observed (80%) compared to enteropathogen-positive cases (47%), indicating that HIV-1 itself is the most likely candidate to be involved in diarrhoea. Conclusion: Unexplained diarrhoea in HIV-1 infected patients is probably not caused by recently described or previously unknown pathogens, but it is more likely that HIV-1 itself plays a role in intestinal mucosal abnormalities which leads to diarrhoea

    High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment

    Get PDF
    A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.</p

    Comparison of seven commercial RT-PCR diagnostic kits for COVID-19

    Get PDF
    The final months of 2019 witnessed the emergence of a novel coronavirus in the human population. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has since spread across the globe and is posing a major burden on society. Measures taken to reduce its spread critically depend on timely and accurate identification of virus-infected individuals by the most sensitive and specific method available, i.e. real-time reverse transcriptase PCR (RT-PCR). Many commercial kits have recently become available, but their performance has not yet been independently assessed. The aim of this study was to compare basic analytical and clinical performance of selected RT-PCR kits from seven different manufacturers (Altona Diagnostics, BGI, CerTest Biotec, KH Medical, PrimerDesign, R-Biopharm AG, and Seegene). We used serial dilutions of viral RNA to establish PCR efficiency and estimate the 95 % limit of detection (LOD95). Furthermore, we ran a panel of SARS-CoV-2-positive clinical samples (n = 13) for a preliminary evaluation of clinical sensitivity. Finally, we used clinical samples positive for non-coronavirus respiratory viral infections (n = 6) and a panel of RNA from related human coronaviruses to evaluate assay specificity. PCR efficiency was β‰₯96 % for all assays and the estimated LOD95 varied within a 6-fold range. Using clinical samples, we observed some variations in detection rate between kits. Importantly, none of the assays showed cross-reactivity with other respiratory (corona)viruses, except as expected for the SARS-CoV-1 E-gene. We conclude that all RT-PCR kits assessed in this study may be used for routine diagnostics of COVID-19 in patients by experienced molecular diagnostic laboratories
    • …
    corecore