1,162 research outputs found

    New immunolatex spheres: visual markers of antigens on lymphocytes for scanning electron microscopy

    Get PDF
    New immunochemical reagents consisting of antibodies bound to small latex spheres were used as visual markers for the detection and localization of cell surface antigens by scanning electron microscopy. Cross-linked latex spheres of various sizes from 300 to 3,4000 Å in diameter were synthesized by aqueous emulsion copolymerization of methacrylate derivatives containing hydroxyl and carboxyl functional groups. Proteins and other molecules containing primary amino groups were covalently bonded to the acrylic spheres under a variety of mild conditions by the aqueous carbodiimide, cyanogen bromide, and glutaraldehyde methods. For use in the indirect immunochemical-labeling technique, goat antibodies directed against rabbit immunoglobulins were bonded to the spheres. These immunolatex reagents were shown to bind only to cells (red blood and lymphocytes) which had previously been sensitized with rabbit antibodies against cell surface antigens. Mouse spleen lymphocytes with exposed immunoglobulins on their surface (B cells) were labeled with these spheres and distinguished from unlabeled or T lymphocytes by scanning electron microscopy. The distribution of Ig receptors on lymphocytes was also studied using the spheres as visual markers. When lymphocytes were fixed with glutaraldehyde and subsequently labeled with the immunolatex reagents, a random distribution was observed by scanning electron microscopy; a patchy distribution was observed when unfixed lymphocytes were used. These results are consistent with studies using ferritin-labeled antibodies (S. De Petris and M. Raff. 1973. Nature [Lond.]. 241:257.) and support the view that Ig receptors on lymphocytes undergo translational diffusion. In addition to serving as visual markers for scanning electron microscopy, these latex spheres tagged with fluorescent or radioactive molecules have applications as highly sensitive markers for fluorescent microscopy and as reagents for quantitative studies of cell surface antigens and other receptors

    Concanavalin a and wheat germ agglutinin receptors on dictyostelium: Their visualization by scanning electron microscopy with microspheres

    Get PDF
    The cellular slime mold, Dictyostelium discoideum, is a convenient model for studying cellular interactions during development. Evidence that specific cell surface components are involved in cellular interactions during its development has been obtained by Gerisch and co-workers (1, 2) using immunological techniques. Smart and Hynes (3) have shown that a cell surface protein can be iodinated on cells in aggregation phase, but not in vegetative phase, by the lactoperoxidase procedure. Recently, McMahon et al. (4), and Hoffman and McMahon have demonstrated, by SDS gel electrophoresis, considerable differences in cell surface proteins and glycoproteins of plasma membranes isolated from cells at different stages of development. Plant lectins have also been used to monitor changes in cell surface properties of D. discoideum cells during development. Weeks and co-workers (5, 6) have detected differences in the binding and agglutination of cells by concanavalin A (Con A). Gillette and Filosa (7) have shown that Con A inhibits cell aggregation and prematurely induces cyclic AMP phosphodiesterase. Capping of Con A receptors has also been reported (8). Reitherman et al. (9) have recently reported that agglutination of cells by several plant lectins and the slime mold agglutination, discoidin, changes during development. Such studies indicate that differences in surface properties exist for cells at various stages of development. However, owing to the uncertainties in the factors which contribute to lectin-induced cell agglutination (10), the molecular basis for these observations remain to be determined. In this study, we have used microspheres (11-14) coupled to either Con A or wheat germ agglutinin (WGA) as visual markers to study by scanning electron microscopy the topographical distribution of lectin receptors on D. discoideum cells fixed at different stages of development. We also describe the effect of labeling on the distribution of lectin receptors and on the morphology of the cell surface

    Cell sorting apparatus

    Get PDF
    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered

    Cell specific, variable density, polymer microspheres

    Get PDF
    Biocompatible polymeric microspheres having an average diameter below about 3 microns and having density at least 15% greater or lesser than organic cells and having covalent binding sites are provided in accordance with this invention. The microspheres are obtained by copolymerizing a hydroxy or amine substituted acrylic monomer such as hydroxyethylmethacrylate with a light or dense comonomer such as a fluoromonomer. A lectin or antibody is bound to the hydroxy or amine site of the bead to provide cell specificity. When added to a cell suspension the marked bead will specifically label the cell membrane by binding to specific receptor sites thereon. The labelled membrane can then be separated by density gradient centrifugation

    Method for producing a biological reagent

    Get PDF
    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered

    Metal containing polymeric functional microspheres

    Get PDF
    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered

    PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    Get PDF
    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia

    Membrane-associated guanylate kinase proteins MPP4 and MPP5 associate with Veli3 at distinct intercellular junctions of the neurosensory retina

    Get PDF
    MPP4 and MPP5 are closely related members of the p55-subfamily of membrane-associated guanylate kinases (MAGUKs) known to mediate the assembly of protein complexes at the plasma membrane of cell–cell junctions. Both MPP4 and MPP5 have been implicated in retinal function; however, their specific roles in the cellular mechanisms underlying vision are largely unknown. Here, we generated specific poly- and monoclonal antibodies against the two proteins and show that MPP4 and MPP5 are localized at distinct sites of cell–cell contact in the mouse retina. While MPP4 is a component of the synaptic terminals of photoreceptors, MPP5 exclusively localizes to apical membrane domains of the outer limiting membrane (OLM) junctions. The vertebrate homologs of Caenorhabditis elegans lin-7, Veli1, -2, and -3, have previously been identified as putative binding partners of MPP5. In this study, we show that MPP4 directly interacts with the Veli proteins via L27 heterodimerization in vitro. In addition, two of the three Veli isoforms, Veli1 and -3, are demonstrated to be expressed in the mouse retina. Immunofluorescence microscopy reveals extensive colocalization of Veli3 with both MPP4 and MPP5. This association of Veli3 with either MPP4 or MPP5 suggests that the MAGUKs recruit Veli3 and its binding partners to different cellular regions of the retina where they may participate in the organization of specialized intercellular junctions

    Disease mutations reveal residues critical to the interaction of P4-ATPases with lipid substrates

    Get PDF
    Abstract Phospholipid flippases (P4-ATPases) translocate specific phospholipids from the exoplasmic to the cytoplasmic leaflet of membranes. While there is good evidence that the overall molecular structure of flippases is similar to that of P-type ATPase ion-pumps, the transport pathway for the “giant” lipid substrate has not been determined. ATP8A2 is a flippase with selectivity toward phosphatidylserine (PS), possessing a net negatively charged head group, whereas ATP8B1 exhibits selectivity toward the electrically neutral phosphatidylcholine (PC). Setting out to elucidate the functional consequences of flippase disease mutations, we have identified residues of ATP8A2 that are critical to the interaction with the lipid substrate during the translocation process. Among the residues pinpointed are I91 and L308, which are positioned near proposed translocation routes through the protein. In addition we pinpoint two juxtaposed oppositely charged residues, E897 and R898, in the exoplasmic loop between transmembrane helices 5 and 6. The glutamate is conserved between PS and PC flippases, whereas the arginine is replaced by a negatively charged aspartate in ATP8B1. Our mutational analysis suggests that the glutamate repels the PS head group, whereas the arginine minimizes this repulsion in ATP8A2, thereby contributing to control the entry of the phospholipid substrate into the translocation pathway
    corecore