315 research outputs found

    Parallels between cancer and infectious disease

    Get PDF

    A dynamic network of transcription in LPS-treated human subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the transcriptional regulatory networks that map out the coordinated dynamic responses of signaling proteins, transcription factors and target genes over time would represent a significant advance in the application of genome wide expression analysis. The primary challenge is monitoring transcription factor activities over time, which is not yet available at the large scale. Instead, there have been several developments to estimate activities computationally. For example, Network Component Analysis (NCA) is an approach that can predict transcription factor activities over time as well as the relative regulatory influence of factors on each target gene.</p> <p>Results</p> <p>In this study, we analyzed a gene expression data set in blood leukocytes from human subjects administered with lipopolysaccharide (LPS), a prototypical inflammatory challenge, in the context of a reconstructed regulatory network including 10 transcription factors, 99 target genes and 149 regulatory interactions. We found that the computationally estimated activities were well correlated to their coordinated action. Furthermore, we found that clustering the genes in the context of regulatory influences greatly facilitated interpretation of the expression data, as clusters of gene expression corresponded to the activity of specific factors or more interestingly, factor combinations which suggest coordinated regulation of gene expression. The resulting clusters were therefore more biologically meaningful, and also led to identification of additional genes under the same regulation.</p> <p>Conclusion</p> <p>Using NCA, we were able to build a network that accounted for between 8–11% genes in the known transcriptional response to LPS in humans. The dynamic network illustrated changes of transcription factor activities and gene expressions as well as interactions of signaling proteins, transcription factors and target genes.</p

    Pretreatment with a 55-kDa Tumor Necrosis Factor Receptor-Immunoglobulin Fusion Protein Attenuates Activation of Coagulation, but not of Fibrinolysis, during Lethal Bacteremia in Baboons

    Get PDF
    Baboons (Papio anubis) receiving a lethal intravenous infusion with live Escherichia coli were pretreated with either a 55-kDa tumor necrosis factor (TNF) receptor-IgG fusion protein (TNFR55:IgG) (n = 4, 4.6 mg/kg) or placebo (n = 4). Neutralization of TNF activity in TNFR55:IgG-treated animals was associated with a complete prevention of mortality and a strong attenuation of coagulation activation as reflected by the plasma concentrations of thrombin-antithrombin III complexes (P < .05). Activation of fibrinolysis was not influenced by TNFR55:IgG (plasma tissue-type plasminogen activator and plasmin-a2-antiplasmin complexes), whereas TNFR55:IgG did inhibit the release of plasminogen activator inhibitor type I (P < .05). Furthermore, TNFR55:IgG inhibited neutrophil degranulation (plasma levels of elastase-α1-antitrypsin complexes, P < .05) and modestly reduced release of secretory phospholipase A2. These data suggest that endogenous TNF contributes to activation of coagulation, but not to stimulation of fibrinolysis, during severe bacteremi

    Prognostic value of NT-proBNP levels in the acute phase of sepsis on lower long-term physical function and muscle strength in sepsis survivors

    Get PDF
    Background: Sepsis survivors often develop chronic critical illness (CCI) and demonstrate the persistent inflammation, immunosuppression, and catabolism syndrome predisposing them to long-term functional limitations and higher mortality. There is a need to identify biomarkers that can predict long-term worsening of physical function to be able to act early and prevent mobility loss. N-terminal pro-brain natriuretic peptide (NT-proBNP) is a well-accepted biomarker of cardiac overload, but it has also been shown to be associated with long-term physical function decline. We explored whether NT-proBNP blood levels in the acute phase of sepsis are associated with physical function and muscle strength impairment at 6 and 12 months after sepsis onset. Methods: This is a retrospective analysis conducted in 196 sepsis patients (aged 18-86 years old) as part of the University of Florida (UF) Sepsis and Critical Illness Research Center (SCIRC) who consented to participate in the 12-month follow-up study. NT-proBNP was measured at 24 h after sepsis onset. Patients were followed to determine physical function by short physical performance battery (SPPB) test score (scale 0 to12-higher score corresponds with better physical function) and upper limb muscle strength by hand grip strength test (kilograms) at 6 and 12 months. We used a multivariate linear regression model to test an association between NT-proBNP levels, SPPB, and hand grip strength scores. Missing follow-up data or absence due to death was accounted for by using inverse probability weighting based on concurrent health performance status scores. Statistical significance was set at p ≤ 0.05. Results: After adjusting for covariates (age, gender, race, Charlson comorbidity index, APACHE II score, and presence of CCI condition), higher levels of NT-proBNP at 24 h after sepsis onset were associated with lower SPPB scores at 12 months (p &lt; 0.05) and lower hand grip strength at 6-month (p &lt; 0.001) and 12-month follow-up (p &lt; 0.05). Conclusions: NT-proBNP levels during the acute phase of sepsis may be a useful indicator of higher risk of long-term impairments in physical function and muscle strength in sepsis survivors

    Overlapping but disparate inflammatory and immunosuppressive responses to SARS-CoV-2 and bacterial sepsis: An immunological time course analysis

    Get PDF
    Both severe SARS-CoV-2 infections and bacterial sepsis exhibit an immunological dyscrasia and propensity for secondary infections. The nature of the immunological dyscrasias for these differing etiologies and their time course remain unclear. In this study, thirty hospitalized patients with SARS-CoV-2 infection were compared with ten critically ill patients with bacterial sepsis over 21 days, as well as ten healthy control subjects. Blood was sampled between days 1 and 21 after admission for targeted plasma biomarker analysis, cellular phenotyping, and leukocyte functional analysi
    • …
    corecore