15 research outputs found

    Clinical and pathologic phenotype of a large family with heterozygous STUB1 mutation

    Get PDF
    Objective To describe the clinical and pathologic features of a novel pedigree with heterozygous STUB1 mutation causing SCA48. Methods We report a large pedigree of Dutch decent. Clinical and pathologic data were reviewed, and genetic analyses (whole-exome sequencing, whole-genome sequencing, and linkage analysis) were performed on multiple family members. Results Patients presented with adult-onset gait disturbance (ataxia or parkinsonism), combined with prominent cognitive decline and behavioral changes. Whole-exome sequencing identified a novel heterozygous frameshift variant c.731_732delGC (p.C244Yfs*24) in STUB1 segregating with the disease. This variant was present in a linkage peak on chromosome 16p13.3. Neuropathologic examination of 3 cases revealed a consistent pattern of ubiquitin/p62-positive neuronal inclusions in the cerebellum, neocortex, and brainstem. In addition, tau pathology was present in 1 case. Conclusions This study confirms previous findings of heterozygous STUB1 mutations as the cause of SCA48 and highlights its prominent cognitive involvement, besides cerebellar ataxia and movement disorders as cardinal features. The presence of intranuclear inclusions is a pathologic hallmark of the disease. Future studies will provide more insight into its pathologic heterogeneity

    Cognitive profiles discriminate between genetic variants of behavioral frontotemporal dementia

    Get PDF
    Introduction: Trials to test disease-modifying treatments for frontotemporal dementia are eagerly awaited and sensitive instruments to assess potential treatment effects are increasingly urgent, yet lacking thus far. We aimed to identify gene-specific instruments assessing clinical onset and disease progression by comparing cognitive functioning between bvFTD patients across genetic mutations. Methods: We examined differences in 7 cognitive domains between bvFTD patients with GRN (n = 20), MAPT (n = 29) or C9orf72 (n = 31) mutations, and non-carriers (n = 24), and describe

    Somatic TARDBP variants as a cause of semantic dementia

    Get PDF
    The aetiology of late-onset neurodegenerative diseases is largely unknown. Here we investigated whether de novo somatic variants for semantic dementia can be detected, thereby arguing for a more general role of somatic variants i

    Molecular pathways involved in frontotemporal lobar degeneration with tdp‐43 proteinopathy

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder clinically characterized by behavioral, language, and motor symptoms, with major impact on the lives of patients and their families. TDP‐43 proteinopathy is the underlying neuropathological substrate in the majority of cases, referred to as FTLD‐TDP. Several genetic causes have been identified, which have revealed some components of its pathophysiology. However, the exact mechanisms driving FTLD‐ TDP remain largely unknown, forestalling the development of therapies. Proteomic approaches, in particular high‐throughput mass spectrometry, hold promise to help elucidate the pathogenic molecular and cellular alterations. In this review, we describe the main findings of the proteomic profiling studies performed on human FTLD‐TDP brain t

    Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients

    Get PDF
    Frontotemporal dementia (FTD) presents with a wide variability in clinical syndromes, genetic etiologies, and underlying pathologies. Despite the discovery of pathogenic variants in several genes, many familial cases remain unsolved. In a large FTD cohort of 198 familial patients, we aimed to determine the types and frequencies of variants in genes related to FTD. Pathogenic or likely pathogenic variants were revealed in 74 (37%) patients, including 4 novel variants. The repeat expansion in C9orf72 was most common (21%), followed by variants in MAPT (6%), GRN (4.5%), and TARDBP (3.5%). Other pathogenic variants were found in VCP, TBK1, PSEN1, and a novel homozygous variant in OPTN. Furthermore, we identified 15 variants of uncertain significance, including a promising variant in TUBA4A and a frameshift in VCP, for which additional research is needed to confirm pathogenicity. The patients without identified genetic cause demonstrated a wide clinical and pathological variety. Our study contributes to the clinical characterization of the genetic subtypes and confirms the value of whole-exome sequencing in identifying novel genetic variants
    corecore