3 research outputs found

    A palaeoenvironmental study of particle size-specific connectivity- new insights and implications from the West Sussex Rother Catchment, United Kingdom

    Get PDF
    Connectivity has become an important conceptual and practical framework for understanding and managing sediment transfers across hillslopes, between hillslopes and rivers and between rivers and other compartments along the river corridor (e.g. reservoirs, channel substrate, floodplain). Conventionally, connectivity focuses on the quantity of sediment transferred but here we also consider the size of the finer sediment (typically particles < 500 µm diameter). We examine the role of small rapidly silting reservoirs in the River Rother on storing sediment and disrupting downstream sediment transfers. Spatial and temporal changes in the particle size characteristics of sediment deposited in one of the ponds is explored in detail. Downstream of this pond we collected sediment from the river on nine occasions over 17 months using two sampling methods at two locations; one immediately downstream of the pond and a second ~700 m further downstream but upstream of the confluence with the Rother. Results showed a significant depletion in sand sized particles immediately downstream of the pond but the sand had been recovered from an in-channel source before the river reached the downstream sampling point

    Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river

    Get PDF
    Purpose This study aims to identify a suitable sediment compartment for sediment quality monitoring by: (a) studying the concentration of trace metals (Cd, Cu, Ni, Pb and Zn) in the bed, bank and suspended sediment compartments of the Ravensbourne River to establish any differences in trace metal concentrations with compartment; (b) determining the influence of sediment particle size fractions ( 0.05) in the concentrations of metals between the suspended sediment and the < 63 μm bed sediment fraction, but there was a significant difference (p < 0.05) between the suspended sediment and the < 63 μm bank sediment fraction. There were also significant differences between the concentrations of metals in the < 63 μm and the 63 μm–2 mm fractions. Generally, the Ravensbourne River did not comply with the draft UK sediment quality guidelines for the metals analysed. Conclusions This study shows the importance of identifying a suitable sediment compartment to sample for compliance with sediment quality standards. The bed and suspended sediments are the most widely used sediment compartments for sediment monitoring, but collecting sufficient mass of the < 63 μm sediment fraction for monitoring presents a challenge for urban gravel bed rivers like the Ravensbourne River. It seems appropriate to establish individual monitoring regimes for different rivers
    corecore