6 research outputs found
Toxicokinetics of three insecticides in the female adult solitary bee Osmia bicornis
The worldwide decline of pollinators is of growing concern and has been related to the use of insecticides.
Solitary bees are potentially exposed to many insecticides through contaminated pollen and/or nectar. The kinetics of these compounds in solitary bees is, however, unknown, limiting the use of these important pollinators in pesticide regulations. Here, the toxicokinetics (TK) of chlorpyrifos (as Dursban 480 EC), cypermethrin (Sherpa 100 EC), and acetamiprid (Mospilan 20 SP) was studied for the first time in Osmia bicornis females at sublethal concentrations (near ). The TK of the insecticides was analysed in bees continuously exposed to insecticide contaminated food in the uptake phase followed by feeding with clean food in the decontamination phase. The TK models differed substantially between the insecticides. Acetamiprid followed the classic one-compartment model with gradual accumulation during the uptake phase followed by depuration during the decontamination phase. Cypermethrin accumulated rapidly in the first two days and then its concentration decreased slowly. Chlorpyrifos accumulated similarly rapidly but no substantial depuration was found until the end of the experiment. Our study demonstrates that some insecticides can harm solitary bees when exposed continuously even at trace concentrations in food because of their constant accumulation leading to time-reinforced toxicity
Physiological and biochemical response of the solitary bee Osmia bicornis exposed to three insecticide-based agrochemicals
The physiological and biochemical stress induced by pesticides need to be addressed in economically and ecologically important non-Apis solitary bees, particularly at lower than field-applied concentrations. Thus, the aim of the present study was to analyse the physiological and biochemical changes in female adult Osmia bicornis bees upon continuous oral exposure to three insecticide-based agrochemicals – i.e. Dursban 480 EC (active ingredient - a.i. chlorpyrifos), Sherpa 100 EC (a.i. cypermethrin), and Mospilan 20 SP (a.i. acetamiprid), in a toxicokinetic manner (feeding with either insecticide-contaminated food or uncontaminated food (controls) for 8 d in the contamination phase followed by 8 d of decontamination (i.e. feeding with uncontaminated food)). All three tested agrochemicals altered the energetic budget of bees by the deprivation of energy derived from lipids and carbohydrates (but not proteins) and/or a decrease in respiration based metabolic rate (energy consumption) compared to the controls. The activities of acetylcholinesterase and glutathione-S-transferase enzymes were not altered by insecticides at tested concentrations. These results show that chronic exposure to at least some pesticides even at relatively low concentrations may cause severe physiological disruptions that could potentially be damaging for the solitary bees
Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor
Three novel and distinct agricultural waste materials, viz., Casuarinas fruit powder (CFP), sorghum stem powder (SSP) and banana stem powder (BSP) were used as low cost adsorbents for the removal of toxic copper(II) from aqueous solutions. Acid treated adsorbents were characterized by SEM, EDX and FTIR. Different factors effecting adsorption capacity were analyzed and the efficiency order was BSP>SSP>CFP. Based on the extent of compatibility to Freundlich/Langmuir/D-R/Temkin adsorption isotherm and different models (pseudo-first and second order, Boyd, Weber’s and Elovich), chemisorption primarily involved in the case of CFP and SSP, whereas, simultaneous occurrence of chemisorption and physisorption was proposed in the case of BSP. Based on the observations, it was proposed that three kinetic stages involve in adsorption process viz., diffusion of sorbate to sorbent, intra particle diffusion and then establishment of equilibrium. These adsorbents have promising role towards removal of Cu(II) from industrial wastewater to contribute environmental protection