13 research outputs found

    The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses

    No full text
    COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to this pandemic, and their impact could reflect the development of reasonable strategies for COVID-19 management. The CC and the CXC families of chemokines are important in host immunity to viral infections and along with other biomarkers can serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine efficacy. Furthermore, the immunogenicity elicited by the chemokine response to adenovirus vector vaccines may constitute the basis of vaccine-induced immune thrombotic thrombocytopaenia

    Regulatory Effects of Various IFN-β Formulations Therapy on CXC Chemokines CXCL1 and CXCL9 Gene/Protein Levels in Relapsing-Remitting Multiple Sclerosis Patients: Regulatory effects of various IFN-β formulations therapy on CXC chemokines

    No full text
    Multiple sclerosis (MS) is a complex clinical immune system disorder. The most common symptoms of MS are recurrent loss of myelin in conjunction with inflammation in the central nervous system (CNS). Chemokines, as important immune system components, play a role in immune responses. This project aimed to examine and compare the serum levels of CXCL1 and CXCL9 in patients with relapse-remitting MS (RRMS) following therapy with IFN-β formulations. Clinical specimens were collected from 50 unrelated healthy controls, as well as 40 RRMS patients treated with Cinnovex™ (CVX, Interferon beta-1a, made in Iran) and Avonex® (AVX, Interferon beta-1a, made in the USA). The fold changes in gene expression of CXCL1 and CXCL9 compared to the β-actin gene were determined using real-time PCR. The protein expression and serum levels of CXCL1 and CXCL9 were measured using the ELISA method. Data analysis was performed using the ANOVA test. The levels of CXCL1 and CXCL9 significantly increased, with greater upregulation observed with AVX and, to a lesser extent, with CVX. Our study results suggest that AVX is more effective than CVX in regulating the immune system, and the dosage of CVX may need to be increased to achieve a more pronounced therapeutic response in RRMS patients

    The Involvement of CXC Motif Chemokine Ligand 10 (CXCL10) and Its Related Chemokines in the Pathogenesis of Coronary Artery Disease and in the COVID-19 Vaccination: A Narrative Review

    No full text
    Coronary artery disease (CAD) and coronary heart disease (CHD) constitute two of the leading causes of death in Europe, USA and the rest of the world. According to the latest reports of the Iranian National Health Ministry, CAD is the main cause of death in Iranian patients with an age over 35 years despite a significant reduction in mortality due to early interventional treatments in the context of an acute coronary syndrome (ACS). Inflammation plays a fundamental role in coronary atherogenesis, atherosclerotic plaque formation, acute coronary thrombosis and CAD establishment. Chemokines are well-recognized mediators of inflammation involved in several bio-functions such as leucocyte migration in response to inflammatory signals and oxidative vascular injury. Different chemokines serve as chemo-attractants for a wide variety of cell types including immune cells. CXC motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10/CXLC10), is a chemokine with inflammatory features whereas CXC chemokine receptor 3 (CXCR3) serves as a shared receptor for CXCL9, 10 and 11. These chemokines mediate immune responses through the activation and recruitment of leukocytes, eosinophils, monocytes and natural killer (NK) cells. CXCL10, interleukin (IL-15) and interferon (IFN-g) are increased after a COVID-19 vaccination with a BNT162b2 mRNA (Pfizer/BioNTech) vaccine and are enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the second vaccination. The aim of the present study is the presentation of the elucidation of the crucial role of CXCL10 in the patho-physiology and pathogenesis of CAD and in identifying markers associated with the vaccination resulting in antibody development

    The Involvement of CXC Motif Chemokine Ligand 10 (CXCL10) and Its Related Chemokines in the Pathogenesis of Coronary Artery Disease and in the COVID-19 Vaccination: A Narrative Review

    No full text
    Coronary artery disease (CAD) and coronary heart disease (CHD) constitute two of the leading causes of death in Europe, USA and the rest of the world. According to the latest reports of the Iranian National Health Ministry, CAD is the main cause of death in Iranian patients with an age over 35 years despite a significant reduction in mortality due to early interventional treatments in the context of an acute coronary syndrome (ACS). Inflammation plays a fundamental role in coronary atherogenesis, atherosclerotic plaque formation, acute coronary thrombosis and CAD establishment. Chemokines are well-recognized mediators of inflammation involved in several bio-functions such as leucocyte migration in response to inflammatory signals and oxidative vascular injury. Different chemokines serve as chemo-attractants for a wide variety of cell types including immune cells. CXC motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10/CXLC10), is a chemokine with inflammatory features whereas CXC chemokine receptor 3 (CXCR3) serves as a shared receptor for CXCL9, 10 and 11. These chemokines mediate immune responses through the activation and recruitment of leukocytes, eosinophils, monocytes and natural killer (NK) cells. CXCL10, interleukin (IL-15) and interferon (IFN-g) are increased after a COVID-19 vaccination with a BNT162b2 mRNA (Pfizer/BioNTech) vaccine and are enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the second vaccination. The aim of the present study is the presentation of the elucidation of the crucial role of CXCL10 in the patho-physiology and pathogenesis of CAD and in identifying markers associated with the vaccination resulting in antibody development

    The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses

    No full text
    COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to this pandemic, and their impact could reflect the development of reasonable strategies for COVID-19 management. The CC and the CXC families of chemokines are important in host immunity to viral infections and along with other biomarkers can serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine efficacy. Furthermore, the immunogenicity elicited by the chemokine response to adenovirus vector vaccines may constitute the basis of vaccine-induced immune thrombotic thrombocytopaenia
    corecore