40 research outputs found

    Production of Antibodies in Chickens

    Get PDF
    Chickens, as a source of desired antibodies, represent an alternate animal system that offers some advantages with respect to animal care, high productivity and special suitability of avian antibodies for certain diagnostic purposes. Despite being an excellent counterpart to mammal IgG chicken IgY antibodies still represent an underused resource. This may be due to the lack of information concerning the possibility of production and application of IgY or their use is being hampered by problems with keeping the chickens and with IgY isolation. As a suggestion how to overcome IgY isolation problems a new immunoaffinity isolation method is presented here. The main purpose of the present work is to provide information on developments and possibilities in the production of chicken IgY. Polyclonal, monoclonal and recombinant forms of IgY, successfully produced so far, as well as their applications are summarised. This article should be a contribution to the efforts of the European Centre for the Validation of Alternative Methods (ECVAM), whose main goal is to promote the scientific and regulatory acceptance of alternative methods, which are of importance to the bioscience and which reduce, refine or replace the use of laboratory animals

    Interakcije nanodelcev z imunskim sistemom

    Get PDF
    When nanoparticles enter the body, their interactions with cells are almost unavoidable. Unintended nanoparticle interaction with immune cells may elicit a molecular response that can have toxic effects and lead to greater susceptibility to infectious diseases, autoimmune disorders, and cancer development. As evidenced by several studies, nanoparticle interactions with biological systems can stimulate inflammatory or allergic reactions and activate the complement system. Nanoparticles can also stimulate immune response by acting as adjuvants or as haptens. Immunosuppressive effects have also been reported. This article gives a brief review of in vitro and in vivo research evidencing stimulatory or suppressive effects of nanoparticles on the immune system of mammals. In order to ensure safe use of nanosized particles, future research should focus on how their physical and chemical properties influence their behaviour in the biological environment, as they not only greatly affect nanoparticle-immune system interactions but can also interfere with experimental assays.Ko nanodelci vstopijo v organizem, pridejo v kontakt s celicami imunskega sistema. Nezaželene interakcije nanodelcev z imunskim sistemom lahko sprožijo molekularni odziv, ki lahko pripelje do toksičnih učinkov in povečane dovzetnosti organizma za okužbe, avtoimunska obolenja ter razvoj raka. Dosedanje raziskave so pokazale, da nanodelci lahko sprožijo vnetne in alergijske reakcije, lahko pa tudi aktivirajo sistem komplementa. Nanodelci lahko delujejo kot adjuvansi ali kot hapteni. Obstajajo pa tudi poročila, ki kažejo na sposobnost nanodelcev, da zavrejo imunski odziv. V članku bomo povzeli ugotovitve dosedanjih raziskav in vitro ter in vivo, ki so bile narejene na področju proučevanja vplivov nanodelcev na stimulacijo ali supresijo imunskega sistema sesalcev. Za zagotovitev varne uporabe nanodelcev moramo razumeti kako fizikalno-kemijske lastnosti nanodelcev vplivajo na njihovo obnašanje v biološkem okolju. Lastnosti nanodelcev moramo upoštevati tudi ob izvajanju poskusov, da se izognemo lažnim rezultatom zaradi potencialne interference nanodelcev z dejavniki v eksperimentalnem okolju. Čeprav je bilo do sedaj narejenih že več nanotoksikoloških raziskav, je vpliv nanodelcev na imunski sistem še vedno slabo razumljen. Sposobnost nanodelcev za modulacijo imunskega odziva narekuje potrebo po nadaljnjih raziskavah interakcij nanodelcev z imunskim sistemom

    Mycoplasma synoviae induces upregulation of apoptotic genes, secretion of nitric oxide and appearance of an apoptotic phenotype in infected chicken chondrocytes

    Get PDF
    The role of chondrocytes in the development of infectious arthritis is not well understood. Several examples of mycoplasma-induced arthritis in animals indicate that chondrocytes come into direct contact with bacteria. The objective of this study was to analyze the interaction of an arthrogenic Mycoplasma synoviae strain WVU 1853 with chicken chondrocytes. We found that M. synoviae significantly reduces chondrocyte respiration. This was accompanied by alterations in chondrocyte morphology, namely cell shrinkage and cytoplasm condensation, as well as nuclear condensation and formation of plasma membrane invaginations containing nuclear material, which appeared to cleave off the cell surface. In concordance with these apoptosis-like events in chondrocytes, transcription was increased in several pro-apoptotic genes. Twenty-four hours after infection, strong upregulation was assayed in NOS2, Mapk11, CASP8 and Casp3 genes. Twenty-four and 72 h incubation of chondrocytes with M. synoviae induced upregulation of AIFM1, NFκB1, htrA3 and BCL2. Casp3 and NOS2 remained upregulated, but upregulation ceased for Mapk11 and CASP8 genes. Increased production of nitric oxide was also confirmed in cell supernates. The data suggests that chicken chondrocytes infected with M. synoviae die by apoptosis involving production of nitric oxide, caspase 3 activation and mitochondrial inactivation. The results of this study show for the first time that mycoplasmas could cause chondrocyte apoptosis. This could contribute to tissue destruction and influence the development of arthritic conditions. Hence, the study gives new insights into the role of mycoplasma infection on chondrocyte biology and development of infectious arthritis in chickens and potentially in humans

    Mycoplasma and host interaction: in vitro gene expression modulation in Mycoplasma synoviae and infected chicken chondrocytes

    Get PDF
    The complex interplay between Mycoplasma synoviae and chicken chondrocytes (CCH), which come into direct contact during infectious synovitis, has been examined at the level of gene expression. Our previous studies demonstrated a significant influence of M. synoviae on the level of CCH gene expression. Here, we show for the first time that in vitro co-cultivation of M. synoviae and CCH also induces upregulation of gene expression in this mycoplasma. We observed significantly increased expression of genes important for M. synoviae pathogenicity, including cysteine protease cysP, neuraminidase nanH, haemagglutinin vlhA, and the putative nuclease MS53_0284. Moreover, the pattern of gene expression was dependent on the infection environment. In CCH, significant changes in the expression of genes encoding catabolic enzymes of the cartilage extracellular matrix (cathepsins B, K and L, aggrecanase ADAM10, and matrix metalloproteinase MMP2) were demonstrated. Infection of CCH with M. synoviae also elevated the expression of the gene encoding peptidyl arginine deiminase, type III (PADI3), which is responsible for the post-translational citrullination of proteins

    Monitoring of Genotoxicity in Drinking Water Using in vitro Comet Assay and Ames Test

    Get PDF
    A screening strategy for evaluation of genotoxic potential of drinking water has been proposed in the present work. Genotoxicity assays with tap water collected at three different sampling points in Ljubljana drinking water region are presented here. In vitro alkaline version of the comet assay was performed with human HepG2 and Caco2 cell lines and protozoa (Tetrahymena thermophila) cells. Parallel genotoxicity evaluation on the same samples was carried out by the Ames test (with/without exogenous metabolic activation) using Salmonella typhimurium TA97a, TA100 and TA1535 strains. Nonconcentrated and concentrated water samples were tested in both bioassays, and chemical analyses were performed to check the contents of pesticides and nitrates. There was no indication of genotoxic activity in any of the drinking water samples according to the Ames test. The results of the comet assays showed differences and possible genotoxic potential among the water samples tested on different cell types, which were, however, statistically not significant, except in two cases. Statistical analyses showed the comet assay was more sensitive than the Ames test for genotoxicity detection in drinking water samples

    Adhesion of Two Lactobacillus gasseri Probiotic Strains on Caco-2 Cells

    Get PDF
    Previous in vitro and in vivo studies showed that two human isolates of Lactobacillus gasseri, LF221 and K7 are able to survive the passage through the gastrointestinal tract and to colonise intestines of pigs at least temporarily. The aim of this study was to examine the adhesion ability of LF221 and K7 strains to Caco-2 cells. Adhesion of lactobacilli from early stationary growth phase was examined at two pH values of DMEM buffer (4.5 and 7). Lactobacillus rhamnosus GG, a widely used strain with clinical evidences of its efficiency, served as a positive control. The number of lactobacilli added to each well was found to be crucial in the adhesion assay. When added, lactobacilli were in range of 2.5 · 106 to 2.5 · 108 cfu/well, the linear correlation between the number of adhered cells (log cfu) and the number of added cells (log cfu) was found for all three strains (R2 > 0.99) at both pH values (4.5 and 7). At the highest concentration of added K7 and GG cells tested (app. 109 cfu/well), the efficiency of adhesion was reduced. pH value of the medium strongly affected the adhesion, which was promoted in acidic conditions (pH=4.5). The adhesion of K7 strain was slightly weaker compared to GG strain at both pH values, while at pH=4.5 the adhesion of LF221 strain was even better than GG adhesion, at least at lower concentration of lactobacilli. The direct comparison of these strains was possible by regression analysis. At lower concentration of lactobacilli (2.5 · 106), the best efficiency of adhesion (% of adhered bacteria) was observed for the strain LF221, reaching the values of 7.8 and 1.9 % at pH=4.5 and 7, respectively, while at higher lactobacilli concentration the ration of adhesion was higher for GG strain (3.3 % at pH=4.5). In conclusion, strains LF221 and K7 were demonstrated to be adhesive, especially in acidic conditions. The level of adhesion of K7 and GG strains positively correlates with the number of added lactobacilli only up to the certain point when the saturation of potential binding sites on Caco-2 cells probably occurs. As the adhesion to Caco-2 cell cultures alone does not guarantee the adhesion of examined strains in vivo, additional studies on experimental animals are in progress and human clinical studies are planned as well

    Production, Characterization and Use of Monoclonal Antibodies Recognizing IgY Epitopes Shared by Chicken, Turkey, Pheasant, Peafowl and Sparrow

    Get PDF
    Chicken antibodies are not only a part of immune defense but are more and more popular commercial products in form of chicken polyclonal, monoclonal or recombinant antibodies. We produced and characterized mouse monoclonal antibodies (mAbs) that recognize epitopes located on heavy or light chain of chicken immunoglobulin Y (chIgY) shared also by some other Phasianidae birds. The use of mAbs 1F5 and 2F10 that recognize heavy chain on chIgY common epitopes was demonstrated on immunoglobulins of turkey, pheasant and peafowl. Chicken IgY light chain specific mAb 3E10 revealed the presence of common epitopes on immunoglobulins of turkey, pheasant and sparrow. Monoclonal antibody clone 1F5/3G2 was used to prepare horseradish peroxidase (HRP) conjugate and immunoadsorbent column. Conjugated mAbs were demonstrated to be excellent secondary antibodies for diagnostics of certain infections in different avian species. Since they do not react with mammalian immunoglobulins using our mAbs as secondary antibodies in human serodiagnostics would minimize background staining that appears when using mouse detection system. In dot immunobinding assay (DIBA) and immunoblot assay they recognized specific IgY antibodies against Mycoplasma synoviae, Mycoplasma gallisepticum and Newcastle disease virus in sera of infected or vaccinated birds. Immunoadsorption as a method for removal of IgY from samples in which Mycoplasma synoviae specific IgY was predominant immunoglobulin class enabled more exact demonstration of specific IgA and IgM antibodies. Herein we are presenting effective mAbs useful in diagnostics of avian and mammalian infections as well as in final steps of detection and purification of chicken antibodies and their subunits produced in vivo or in vitro as polyclonal, monoclonal or recombinant antibodies

    Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees

    Get PDF
    During their lifetime honey bees (Apis mellifera) rarely experience optimal conditions. Sometimes, a simultaneous action of multiple stressors, natural and chemical, results in even greater effect than of any stressor alone. Therefore, integrative investigations of different factors affecting honey bees have to be carried out. In this study, adult honey bees exposed to thiamethoxam in larval and/or adult stage and infected with Nosema ceranae were examined. Newly emerged bees from colonies, non-treated or treated with thiamethoxam, were organized in six groups and kept in cages. Thiamethoxam treated bees were further exposed to either thiamethoxam or Nosema (groups TT and TN), or simultaneously to both (group TTN). Newly emerged bees from non-treated colonies were exposed to Nosema (group CN). From both, treated and non-treated colonies two groups were organized and further fed only with sugar solution (groups C and TC). Here, we present the expression profile of 19 genes in adult worker honey bees comprising those involved in immune, detoxification, development and apoptosis response. Results showed that gene expression patterns changed with time and depended on the treatment. In group TC at the time of emergence the majority of tested genes were downregulated, among which nine were significantly altered. The same gene pattern was observed on day six, where the only significantly upregulated gene was defensin-1. On day nine most of analyzed genes in all experimental groups showed upregulation compared to control group, where upregulation of antimicrobial peptide genes abaecin, defensin-1 and defensin-2 was significant in groups TT and TTN. On day 15 we observed a similar pattern of expression in groups TC and TT exposed to thiamethoxam only, where most of the detoxification genes were downregulated. Additionally RNA loads of Nosema and honey bee viruses were recorded. We detected a synergistic interaction of thiamethoxam and Nosema, reflected in lowest honey bee survival
    corecore