103 research outputs found

    Contribution of Xenopus model to a better understanding of cardiac outflow tract

    Get PDF
    Contribution of Xenopus model to a better understanding of cardiac outflow tract. A Torres-Prioris 1, SJ Smith 2, TJ Mohun 2, B Fernández 1, AC Durán 1. 1 Department of Animal Biology, Faculty of Science, and Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Spain. 2 Developmental Biology Division, The Francis Crick Institute, Mill Hill Laboratory, London, UK. The morphology and morphogenesis of the cardiac outflow tract is a major topic in the study of the vertebrate circulatory system, especially regarding the pathologies affecting this region in humans. Recent studies have demonstrated that, in fish, the cardiac outflow tract consists of a myocardial conus arteriosus and a nonmyocardial bulbus arteriosus. Moreover, the bulbus arteriosus of fish has been considered homologous to the intrapericardial base of the aortic and pulmonary trunks of birds and mammals. Under this perspective, we have conducted a study on the outflow tract of Xenopus laevis, using histological, immunohistochemical and 3D reconstruction techniques. It has been assumed that the outflow tract of Xenopus, which is intercalated between the ventricle and the great arterial trunks, is of myocardial nature. At its luminal side, it contains two sets of valves between which the so-called spiral valve lies. Our results demonstrate that, together with a proximal myocardial segment, a distal, nonmyocardial, intrapericardial segment is also present in amphibians. We propose that this distal segment, from which the pulmocutaneous and systemic arteries arise, is homologous to the bulbus arteriosus of fish. Therefore, the bulbus arteriosus is an evolutionarily conserved structure, which has become the aortic and pulmonary roots of birds and mammals. Our findings contribute to strengthening Xenopus as a good model to better understand the outflow tract morphology and evolution, and as an emerging model for studying human congenital heart diseases. This work was supported by CGL2010-16417, BES-2011-046901, Estancias Breves para FPI (2012, 2013) and FEDER funds.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. CGL2010-16417, BES-2011-046901, Estancias Breves para FPI (2012, 2013), FEDER funds

    GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos

    Get PDF
    Background: GATA factors 4/5/6 have been implicated in the development of the heart and endodermal derivatives in vertebrates. Work in zebrafish has indicated that GATA5 is required for normal development earlier than GATA4/6. However, the GATA5 knockout mouse has no apparent embryonic phenotype, thereby questioning the importance of the gene for vertebrate development. Results: In this study we show that in Xenopus embryos GATA5 is essential for early development of heart and liver precursors. In addition, we have found that in Xenopus embryos GATA4 is important for development of heart and liver primordia following their specification, and that in this role it might interact with GATA6. Conclusion: Our results suggest that GATA5 acts earlier than GATA4 to regulate development of heart and liver precursors, and indicate that one early direct target of GATA5 is homeobox gene Hex

    Visualizing Vertebrate Embryos with Episcopic 3D Imaging Techniques

    Get PDF
    The creation of highly detailed, three-dimensional (3D) computer models is essential in order to understand the evolution and development of vertebrate embryos, and the pathogenesis of hereditary diseases. A still-increasing number of methods allow for generating digital volume data sets as the basis of virtual 3D computer models. This work aims to provide a brief overview about modern volume data–generation techniques, focusing on episcopic 3D imaging methods. The technical principles, advantages, and problems of episcopic 3D imaging are described. The strengths and weaknesses in its ability to visualize embryo anatomy and labeled gene product patterns, specifically, are discussed

    Revisiting the anatomy of the right ventricle in the light of knowledge of its development

    Get PDF
    Controversies continue regarding several aspects of the anatomy of the morphologically right ventricle. There is disagreement as to whether the ventricle should be assessed in bipartite or tripartite fashion, and the number of leaflets to be found in the tricuspid valve. In particular, there is no agreement as to whether a muscular outlet septum is present in the normally constructed heart, nor how many septal components are to be found during normal development. Resolving these issues is of potential significance to those investigating and treating children with congenitally malformed hearts. With all these issues in mind, we have revisited our own experience in investigating the development and morphology of the normal right ventricle. To assess development, we have examined a large number of datasets, prepared by both standard and episcopic microscopy, from human and murine embryos. In terms of gross anatomy, we have compared dissections of normal autopsied hearts with virtual dissections of datasets prepared using computed tomography. Our developmental and postnatal studies, taken together, confirm that the ventricle is best assessed in tripartite fashion, with the three parts representing its inlet, apical trabecular, and outlet components. The ventricular septum, however, has only muscular and membranous components. The muscular part incorporates a small component derived from the muscularised fused proximal outflow cushions, but this part cannot be distinguished from the much larger part that is incorporated within the free-standing muscular infundibular sleeve. We confirm that the tricuspid valve itself has three components, which are located inferiorly, septally, and antero-superiorly.<br/

    Revisiting the anatomy of the right ventricle in the light of knowledge of its development

    Get PDF
    Controversies continue regarding several aspects of the anatomy of the morphologically right ventricle. There is disagreement as to whether the ventricle should be assessed in bipartite or tripartite fashion, and the number of leaflets to be found in the tricuspid valve. In particular, there is no agreement as to whether a muscular outlet septum is present in the normally constructed heart, nor how many septal components are to be found during normal development. Resolving these issues is of potential significance to those investigating and treating children with congenitally malformed hearts. With all these issues in mind, we have revisited our own experience in investigating the development and morphology of the normal right ventricle. To assess development, we have examined a large number of datasets, prepared by both standard and episcopic microscopy, from human and murine embryos. In terms of gross anatomy, we have compared dissections of normal autopsied hearts with virtual dissections of datasets prepared using computed tomography. Our developmental and postnatal studies, taken together, confirm that the ventricle is best assessed in tripartite fashion, with the three parts representing its inlet, apical trabecular, and outlet components. The ventricular septum, however, has only muscular and membranous components. The muscular part incorporates a small component derived from the muscularised fused proximal outflow cushions, but this part cannot be distinguished from the much larger part that is incorporated within the free-standing muscular infundibular sleeve. We confirm that the tricuspid valve itself has three components, which are located inferiorly, septally, and antero-superiorly.<br/

    The Mouse Limb Anatomy Atlas: An interactive 3D tool for studying embryonic limb patterning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developing mouse limb is widely used as a model system for studying tissue patterning. Despite this, few references are available that can be used for the correct identification of developing limb structures, such as muscles and tendons. Existing textual references consist of two-dimensional (2D) illustrations of the adult rat or mouse limb that can be difficult to apply when attempting to describe the complex three-dimensional (3D) relationship between tissues.</p> <p>Results</p> <p>To improve the resources available in the mouse model, we have generated a free, web-based, interactive reference of limb muscle, tendon, and skeletal structures at embryonic day (E) 14.5 <url>http://www.nimr.mrc.ac.uk/3dlimb/</url>. The Atlas was generated using mouse forelimb and hindlimb specimens stained using immunohistochemistry to detect muscle and tendon. Limbs were scanned using Optical Projection Tomography (OPT), reconstructed to make 3D models and annotated using computer-assisted segmentation tools in Amira 3D Visualisation software. The annotated dataset is visualised using Java, JAtlasView software. Users click on the names of structures and view their shape, position and relationship with other structures within the 3D model and also in 2D virtual sections.</p> <p>Conclusion</p> <p>The Mouse Limb Anatomy Atlas provides a novel and valuable tool for researchers studying limb development and can be applied to a range of research areas, including the identification of abnormal limb patterning in transgenic lines and studies of models of congenital limb abnormalities. By using the Atlas for "virtual" dissection, this resource offers an alternative to animal dissection. The techniques we have developed and employed are also applicable to many other model systems and anatomical structures.</p

    The Mouse Limb Anatomy Atlas: An interactive 3D tool for studying embryonic limb patterning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developing mouse limb is widely used as a model system for studying tissue patterning. Despite this, few references are available that can be used for the correct identification of developing limb structures, such as muscles and tendons. Existing textual references consist of two-dimensional (2D) illustrations of the adult rat or mouse limb that can be difficult to apply when attempting to describe the complex three-dimensional (3D) relationship between tissues.</p> <p>Results</p> <p>To improve the resources available in the mouse model, we have generated a free, web-based, interactive reference of limb muscle, tendon, and skeletal structures at embryonic day (E) 14.5 <url>http://www.nimr.mrc.ac.uk/3dlimb/</url>. The Atlas was generated using mouse forelimb and hindlimb specimens stained using immunohistochemistry to detect muscle and tendon. Limbs were scanned using Optical Projection Tomography (OPT), reconstructed to make 3D models and annotated using computer-assisted segmentation tools in Amira 3D Visualisation software. The annotated dataset is visualised using Java, JAtlasView software. Users click on the names of structures and view their shape, position and relationship with other structures within the 3D model and also in 2D virtual sections.</p> <p>Conclusion</p> <p>The Mouse Limb Anatomy Atlas provides a novel and valuable tool for researchers studying limb development and can be applied to a range of research areas, including the identification of abnormal limb patterning in transgenic lines and studies of models of congenital limb abnormalities. By using the Atlas for "virtual" dissection, this resource offers an alternative to animal dissection. The techniques we have developed and employed are also applicable to many other model systems and anatomical structures.</p

    Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2

    Get PDF
    AbstractThe yeast UBC9 gene encodes a protein with homology to the E2 ubiquitin-conjugating enzymes that mediate the attachment of ubiquitin to substrate proteins [1]. Depletion of Ubc9p arrests cells in G2 or early M phase and stabilizes B-type cyclins [1]. p18Ubc9, the Xenopus homolog of Ubc9p, associates specifically with p88RanGAP1 and p340RanBP2[2]. Ran-binding protein 2 (p340RanBP2) is a nuclear pore protein [3,4], and p88RanGAP1 is a modified form of RanGAP1, a GTPase-activating protein for the small GTPase Ran [2]. It has recently been shown that mammalian RanGAP1 can be conjugated with SUMO-1, a small ubiquitin-related modifier [5–7], and that SUMO-1 conjugation promotes RanGAP1's interaction with RanBP2 [2,5,6]. Here we show that p18Ubc9 acts as an E2-like enzyme for SUMO-1 conjugation, but not for ubiquitin conjugation. This suggests that the SUMO-1 conjugation pathway is biochemically similar to the ubiquitin conjugation pathway but uses a distinct set of enzymes and regulatory mechanisms. We also show that p18Ubc9 interacts specifically with the internal repeat domain of RanBP2, which is a substrate for SUMO-1 conjugation in Xenopus egg extracts

    The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly

    Get PDF
    AbstractAdprhl1, a member of the ADP-ribosylhydrolase protein family, is expressed exclusively in the developing heart of all vertebrates. In the amphibian Xenopus laevis, distribution of its mRNA is biased towards actively growing chamber myocardium. Morpholino oligonucleotide-mediated knockdown of all Adprhl1 variants inhibits striated myofibril assembly and prevents outgrowth of the ventricle. The resulting ventricles retain normal electrical conduction and express markers of chamber muscle differentiation but are functionally inert. Using a cardiac-specific Gal4 binary expression system, we show that the abundance of Adprhl1 protein in tadpole hearts is tightly controlled through a negative regulatory mechanism targeting the 5′-coding sequence of Xenopus adprhl1. Over-expression of full length (40kDa) Adprhl1 variants modified to escape such repression, also disrupts cardiac myofibrillogenesis. Disarrayed myofibrils persist that show extensive branching, with sarcomere division occurring at the actin-Z-disc boundary. Ultimately, Adprhl1-positive cells contain thin actin threads, connected to numerous circular branch points. Recombinant Adprhl1 can localize to stripes adjacent to the Z-disc, suggesting a direct role for Adprhl1 in modifying Z-disc and actin dynamics as heart chambers grow. Modelling the structure of Adprhl1 suggests this cardiac-specific protein is a pseudoenzyme, lacking key residues necessary for ADP-ribosylhydrolase catalytic activity

    Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration

    Get PDF
    BACKGROUND: The molecular mechanisms governing vertebrate appendage regeneration remain poorly understood. Uncovering these mechanisms may lead to novel therapies aimed at alleviating human disfigurement and visible loss of function following injury. Here, we explore tadpole tail regeneration in Xenopus tropicalis, a diploid frog with a sequenced genome. RESULTS: We found that, like the traditionally used Xenopus laevis, the Xenopus tropicalis tadpole has the capacity to regenerate its tail following amputation, including its spinal cord, muscle, and major blood vessels. We examined gene expression using the Xenopus tropicalis Affymetrix genome array during three phases of regeneration, uncovering more than 1,000 genes that are significantly modulated during tail regeneration. Target validation, using RT-qPCR followed by gene ontology (GO) analysis, revealed a dynamic regulation of genes involved in the inflammatory response, intracellular metabolism, and energy regulation. Meta-analyses of the array data and validation by RT-qPCR and in situ hybridization uncovered a subset of genes upregulated during the early and intermediate phases of regeneration that are involved in the generation of NADP/H, suggesting that these pathways may be important for proper tail regeneration. CONCLUSIONS: The Xenopus tropicalis tadpole is a powerful model to elucidate the genetic mechanisms of vertebrate appendage regeneration. We have produced a novel and substantial microarray data set examining gene expression during vertebrate appendage regeneration
    • …
    corecore