3 research outputs found
An investigation into the phenomenological relation between solar activity and nuclear beta-decay rates
We investigate experimental evidence for time-varying nuclear decay rates, in contrast to the widely-accepted view that nuclear decaying isotopes disintegrate at a constant rate unaffected by external conditions. We study several past cases of radioactive isotopes exhibiting annual periodicities in their decay rates, presumably related to the annual variation in Earth-Sun distance. Following recent indications of shorter-lived anomalies in 54Mn decay rates concomitant with an X-class flare in 2006, we attempt to design and develop a series of unique signal detection algorithms to identify regions of anomalous activity in a nuclear decay signal. With stringent threshold cut-offs and filtering processes, these regions are isolated as exhibiting statistically significant deviations from an expected exponential decay model. The isolated decay flags are compared to daily distributions of multiple solar indices associated with heightened flare activity. We present the findings from a 2 year period of data collection on 54Mn. Of the several computational checks performed to verify the validity of these results, none were able to produce values as good as those generated from the actual decay measurements
Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather
[EN] For several years, reports have been published about fluctuations in measured radioactive decay time-series and in some instances linked to astrophysical as well as classical environmental influences. Anomalous behaviors of radioactive decay measurement and measurement of capacitance inside and outside a modified Faraday cage were documented by our group in previous work. In the present report, we present an in-depth analysis of our measurement with regard to possible correlations with space weather, i.e. the geomagnetic activity (GMA) and cosmic-ray activity (CRA). Our analysis revealed that the decay and capacitance time-series are statistically significantly correlated with GMA and CRA when specific conditions are met. The conditions are explained in detail and an outlook is given on how to further investigate this important finding. Our discovery is relevant for all researchers investigating radioactive decay measurements since they point out that the space weather condition during the measurement is relevant for partially explaining the observed variability.This work has been partially financed by: grant no. 20170764 (Equipos de deteccion, regulacion e informacion en el sector de los sistemas inteligentes de transporte (ITS). Nuevos modelos y ensayos de compatibilidad y verificacion de funcionamiento) (Spain), by grant no. RTI2018-102256-B-I00 (Spain), by the Generalitat Valenciana (Spain) under project Bioingenieria de las Radiaciones Ionizantes. Biorad (PROMETEO/2018/035) and the project MEMO RADION (IDIFEDER/2018/038) co-financed by the Programa Operativo del Fondo Social Europeo 2014-2020", and by grant No.075-00845-20-01 (Russia).Milián-Sánchez, V.; Scholkmann, F.; Fernández De CĂłrdoba, P.; MocholĂ Salcedo, A.; MocholĂ-Belenguer, F.; Iglesias-MartĂnez, ME.; Castro-Palacio, JC.... (2020). Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather. Scientific Reports. 10(1):1-12. https://doi.org/10.1038/s41598-020-64497-0S112101Milián-Sánchez, V., MocholĂ-Salcedo, A., Milián, C., Kolombet, V. A. & VerdĂş, G. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 210–228 (2016).G. F. Knoll Radiation Detection and Measurement, 4th Edition. (Wiley, 2010).Jenkins, J. H., Mundy, D. W. & Fischbach, E. Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 620, 332–342 (2010).Jenkins, J. H. et al. Additional experimental evidence for a solar influence on nuclear decay rates. Astroparticle Physics 37, 81–88 (2012).Falkenberg, E. D. Radioactive Decay Caused by Neutrinos? Apeiron 8, 32–45 (2001).A. G. Parkhomov Influence of Relic Neutrinos on Beta Radioactivity. arXiv:1010.1591v1 [physics.gen-ph], (2010).P. A. Sturrock, E. Fischbach, A. G. Parkhamov, J. D. Scargle, G. Steinitz, Concerning the variability of beta-decay measurements. arXiv:1510.05996 [nucl-ex], (2015).Baurov, Y. A. et al. Experimental Investigations of Changes in β-Decay if 60Co and 137Cs. Modern Physics Letters A 16, 2089–2101 (2001).Baurov, Y. A. Research of Global Anisotropy of Physical Space on Investigation Base of Changes in β and α-decay Rate of Radioactive Elements. Motion of Pulsars and Anisotropy of Cosmic Rays. American Journal of Modern Physics 2, 177–184 (2013).Baurov, Y. A., Sobolev, Y. G., Ryabov, Y. V. & Kushniruk, V. F. Experimental investigations of changes in the rate of beta decay of radioactive elements. Physics of Atomic Nuclei 70, 1825–1835 (2009).Baurov, Y. A. The anisotropic phenomenon in the β decay of radioactive elements and in other processes in nature. Bulletin of the Russian Academy of Sciences: Physics 76, 1076–1080 (2012).Baurov, Y. A., Sobolev, Y. G. & Ryabov, Y. V. New force, global anisotropy and the changes in β-decay rate of radioactive elements. American Journal of Astronomy and Astrophysics 2, 8–19 (2014).Pons, D. J., Pons, A. D. & Pons, A. J. Asymmetrical neutrino induced decay of nucleons. Applied Physics Research 7, 1–13 (2015).Pons, D. J., Pons, A. D. & Pons, A. J. Hidden Variable Theory Supports Variability in Decay Rates of Nuclides. Applied Physics Research 7, 18–29 (2015).Kossert, K. & Nähle, O. J. Long-term measurements of 36Cl to investigate potential solar influence on the decay rate. Astroparticle Physics 55, 33–36 (2014).Schrader, H. Seasonal variations of decay rate measurement data and their interpretation. Applied Radiation and Isotopes 114, 202–213 (2016).PommĂ©, S. et al. Evidence against solar influence on nuclear decay constants. Physics Letters B 761, 281–286 (2016).Bergeson, S. D., Peatross, J. & Ware, M. J. Precision long-term measurements of beta-decay-rate ratios in a controlled environment. Physics Letters B 767, 171–176 (2017).McKnight, Q., Bergeson, S. D., Peatross, J. & Ware, M. J. 2.7 years of beta-decay-rate ratio measurements in a controlled environment. Applied Radiation and Isotopes 142, 113–119 (2018).PommĂ©, S. et al. On decay constants and orbital distance to the Sun—part I: alpha decay. Metrologia 54, 1–18 (2017).PommĂ©, S. et al. On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay. Metrologia 54, 36–50 (2017).PommĂ©, S., Lutter, G., Marouli, M., Kossert, K. & Nähle, O. On the claim of modulations in radon decay and their association with solar rotation. Astroparticle Physics 97, 38–45 (2018).S. PommĂ©, K. Kossert, O. Nähle On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation. Solar Physics 292 (2017).PommĂ©, S. et al. Is decay constant? Applied Radiation and Isotopes 134, 6–12 (2018).Bellotti, E., Broggini, C., Di Carlo, G., Laubenstein, M. & Menegazzo, R. Search for time modulations in the decay constant of 40 K and 226 Ra at the underground Gran Sasso Laboratory. Physics Letters B 780, 61–65 (2018).Borrello, J. A., Wuosmaa, A. & Watts, M. Non-dependence of nuclear decay rates of 123 I and 99m Tc on Earth-Sun distance. Applied Radiation and Isotopes 132, 189–194 (2018).Sturrock, P. A., Steinitz, G., Fischbach, E., Parkhomov, A. & Scargle, J. D. Analysis of beta-decay data acquired at the Physikalisch-Technische Bundesanstalt: Evidence of a solar influence. Astroparticle Physics 84, 8–14 (2016).Stancil, D. D., Balci Yegen, S., Dickey, D. A. & Gould, C. R. Search for possible solar influences in Ra-226 decays. Results in Physics 7, 385–406 (2017).P. A. Sturrock, G. Steinitz & E. Fischbach Analysis of Ten Years of Radon-Chain Decay Measurements: Evidence of Solar Influences and Inferences Concerning Solar Internal Structure and the Role of Neutrinos. arXiv:1705.03010 [astro-ph.SR], (2017).Sturrock, P. A., Steinitz, G. & Fischbach, E. Concerning the variability of nuclear decay rates: Rebuttal of an article by Pomme et al. [1]. Astroparticle Physics 98, 9–12 (2018).PommĂ©, S., Lutter, G., Marouli, M., Kossert, K. & Nähle, O. A reply to the rebuttal by Sturrock et al. Astroparticle Physics 107, 22–25 (2019).S. PommĂ©, Solar influence on radon decay rates: irradiance or neutrinos? The European Physical Journal C. 79 (2019).Barnes, V. E. et al. Upper limits on perturbations of nuclear decay rates induced by reactor electron antineutrinos. Applied Radiation and Isotopes 149, 182–199 (2019).PommĂ©, S., Stroh, H. & Van Ammel, R. The 55Fe half-life measured with a pressurised proportional counter. Applied Radiation and Isotopes 148, 27–34 (2019).Elmaghraby, E. E. Configuration Mixing in Particle Decay and Reaction. Progress in Physics 13, 150–155 (2017).Shnoll, S. E. et al. Realization of discrete states during fluctuations in macroscopic processes. Physics-Uspekhi 41, 1025–1035 (1998).Namiot, V. A. & Shnoll, S. E. On the possible mechanism of periodicity in fine structure of histograms during nuclear decay processes. Physics Letters A 359, 249–251 (2006).Panchelyuga, V. A. & Panchelyuga, M. S. Fractal dimension and histogram method: Algorithm and some preliminary results of noise-like time series analysis. Biophysics 58, 283–289 (2013).Panchelyuga, V. A. & Panchelyuga, M. S. Local fractal analysis of noise-like time series by the all-permutations method for 1–115 min periods. Complex Systems Biophysics 60, 317–330 (2015).T. A. Zenchenko, A. A. Konradov, K. I. Zenchenko In Biophotonics and Coherent Systems in Biology. chap. Chapter 18, pp. 225–233 (2005).Jenkins, J. H. & Fischbach, E. Perturbation of nuclear decay rates during the solar flare of 2006 December 13. Astroparticle Physics 31, 407–411 (2009).F. Scholkmann et al., Anomalous effects of radioactive decay rates and capacitance values measured inside a modified Faraday cage: Correlations with space weather. EPL (Europhysics Letters) 117 (2017).M. E. Iglesias-MartĂnez et al. Correlations between Background Radiation Inside a Multilayer Interleaving Structure, Geomagnetic Activity, and Cosmic Radiation: A Fourth-Order Cumulant-Based Correlation Analysis. Mathematics 8 (2020).Karinen, A. & Mursula, K. A new reconstruction of the Dst index for 1932-2002. Annales Geophysicae 23, 475–485 (2005).A. Karinen, K. Mursula Correcting the Dst index: Consequences for absolute level and correlations. Journal of Geophysical Research 111 (2006).Nakamura, T., Uwamino, Y., Ohkubo, T. & Hara, A. Altitude Variation of Cosmic-ray Neutrons. Health Physics 53, 509–517 (1987).Hendrick, L. D. & Edge, R. D. Cosmic-Ray Neutrons near the Earth. Physical Review 145, 1023–1025 (1966).Yamashita, M., Stephens, L. D. & Patterson, H. W. Cosmic-ray-produced neutrons at ground level: Neutron production rate and flux distribution. Journal of Geophysical Research 71, 3817–3834 (1966).Mohsinally, T. et al. Evidence for correlations between fluctuations in 54Mn decay rates and solar storms. Astroparticle Physics 75, 29–37 (2016).Snyder, C. W., Neugebauer, M. & Rao, U. R. The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. Journal of Geophysical Research 68, 6361–6370 (1963).Kharayat, H., Prasad, L., Mathpal, R., Garia, S. & Bhatt, B. Study of Cosmic Ray Intensity in Relation to the Interplanetary Magnetic Field and Geomagnetic Storms for Solar Cycle 23. Solar Physics 291, 603–611 (2016).M. Tsichla, M. Gerontidou, H. Mavromichalaki, Spectral Analysis of Solar and Geomagnetic Parameters in Relation to Cosmic-ray Intensity for the Time Period 1965 – 2018. Solar Physics 294 (2019).Singh, Y. P. Badruddin, Short- and mid-term oscillations of solar, geomagnetic activity and cosmic-ray intensity during the last two solar magnetic cycles. Planetary and Space Science 138, 1–6 (2017).B. Adhikari, N. Sapkota, P. Baruwal, N. P. Chapagain & C. R. Braga Impacts on Cosmic-Ray Intensity Observed During Geomagnetic Disturbances. Solar Physics 292 (2017).Grigoryev, V. G., Starodubtsev, S. A. & Gololobov, P. Y. Monitoring geomagnetic disturbance predictors using data of ground measurements of cosmic rays. Bulletin of the Russian Academy of Sciences: Physics 81, 200–202 (2017).W. Reich Selected Writings: An Introduction to Orgonomy. (Farrar, Straus and Cudahy, 1960).Fischbach, E. et al. Time-Dependent Nuclear Decay Parameters: New Evidence for New Forces? Space Science Reviews 145, 285–335 (2009).Javorsek, D. et al. Power spectrum analyses of nuclear decay rates. Astroparticle Physics 34, 173–178 (2010).Bellotti, E., Broggini, C., Di Carlo, G., Laubenstein, M. & Menegazzo, R. Search for time dependence of the 137Cs decay constant. Physics Letters B 710, 114–117 (2012)