50 research outputs found

    Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment

    Get PDF
    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and therapeutic options for advanced HCC are limited. Here, we observe that intestinal dysbiosis affects antitumor immune surveillance and drives liver disease progression towards cancer. Dysbiotic microbiota, as seen in Nlrp6(-/-) mice, induces a Toll-like receptor 4 dependent expansion of hepatic monocytic myeloid-derived suppressor cells (mMDSC) and suppression of T-cell abundance. This phenotype is transmissible via fecal microbiota transfer and reversible upon antibiotic treatment, pointing to the high plasticity of the tumor microenvironment. While loss of Akkermansia muciniphila correlates with mMDSC abundance, its reintroduction restores intestinal barrier function and strongly reduces liver inflammation and fibrosis. Cirrhosis patients display increased bacterial abundance in hepatic tissue, which induces pronounced transcriptional changes, including activation of fibro-inflammatory pathways as well as circuits mediating cancer immunosuppression. This study demonstrates that gut microbiota closely shapes the hepatic inflammatory microenvironment opening approaches for cancer prevention and therapy. Steatohepatitis is a chronic hepatic inflammation associated with increased risk of hepatocellular carcinoma progression. Here the authors show that intestinal dysbiosis in mice lacking the inflammasome sensor molecule NLRP6 aggravates steatohepatitis and accelerates liver cancer progression, a process that can be delayed by antibiotic treatment.Peer reviewe

    Role of CCL5 in a model of chronic liver injury and tumorigenesis

    No full text
    Background Aims: Chronic hepatocyte injury with a continuous inflammatory response is the basis for liver disease progression triggering liver fibrosis as well as malignant transformation leading to hepatocellular carcinoma (HCC). Immune cells play a central role in this multifactorial process. Therefore, in the present study we aimed to investigate the role of CCL5 in humans, but also mechanistically in a murine model of chronic liver inflammation leading to HCC development. Methods: The expression of CCL5 and its receptors was examined in a well-defined patient co-hort with chronic liver disease. The NEMOΔhepa model of chronic liver disease in mice was used to investigate the role of CCL5 (NEMOΔhepa/CCL5-/- mice) for disease progression. Additionally, bone marrow transplantation (BMT) experiments and interventional studies using Evasin-4 - a chemokine binding protein - were performed to evaluate the impact of pharmacological intervention for disease progression. Results: In humans CCL5 expression increases with the grad of liver fibrosis and is associated with a significant overexpression of CCR5 - an observation that has been confirmed in the murine NEMOΔhepa model of chronic liver disease. CCL5 deletion in NEMOΔhepa mice improved liver injury, accompanied by decreased apoptosis and compensatory proliferation. In addition, the inflammatory milieu was reduced and showed a diminished immune cell infiltration, especially pro-inflammatory monocytes, Ly6G+ granulocytes, CD4+ and CD8+ T cells. Time-dependent analysis revealed a decrease in fibrosis progression and tumor development in NEMOΔhepa/CCL5-/- mice. Bone marrow transplantation experiments identified hematopoietic cells as the relevant source of CCL5 production. Finally, therapeutic intervention with Evasin-4 over a period of 8 weeks significantly ameliorated liver disease progression. Conclusion: Our present analysis identifies the important role of CCL5 in men and functionally in mice for disease progression and especially HCC development. A novel approach to inhibit CCL5 in vivo seems also encouraging treatment option for humans

    NRF2/KEAP1 in hepatocytes controls fibro- and carcinogenesis in chronic liver disease

    No full text
    Background & Aims: Inflammation in chronic liver diseases induces oxidative stress and thus may contribute to progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in human and mice. Methods: The clinical relevance of oxidative stress was investigated in a well-characterized cohort of NAFLD patients (n=63) by liver RNA sequencing and correlated with histological and clinical parameters. For functional analysis hepatocyte-specific NEMO knock-out (NEMO∆hepa) mice were crossed with hepatocyte-specific KEAP1 knock-out (KEAP1∆hepa) mice. Results: Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that KEAP1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMO∆hepa livers was rescued after deleting KEAP1. As a consequence, NEMO∆hepa/KEAP1∆hepa livers showed reduced apoptosis compared to NEMO∆hepa livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMO∆hepa/KEAP1∆hepa compared to NEMOΔhepa livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. Conclusions: NRF2 activation in NASH patients correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis

    NRF2/KEAP1 in hepatocytes controls fibro- and carcinogenesis in chronic liver disease

    No full text
    Background & Aims: Inflammation in chronic liver diseases induces oxidative stress and thus may contribute to progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in human and mice. Methods: The clinical relevance of oxidative stress was investigated in a well-characterized cohort of NAFLD patients (n=63) by liver RNA sequencing and correlated with histological and clinical parameters. For functional analysis hepatocyte-specific NEMO knock-out (NEMO∆hepa) mice were crossed with hepatocyte-specific KEAP1 knock-out (KEAP1∆hepa) mice. Results: Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that KEAP1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMO∆hepa livers was rescued after deleting KEAP1. As a consequence, NEMO∆hepa/KEAP1∆hepa livers showed reduced apoptosis compared to NEMO∆hepa livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMO∆hepa/KEAP1∆hepa compared to NEMOΔhepa livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. Conclusions: NRF2 activation in NASH patients correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis

    MyD88-dependent signaling in non-parenchymal cells promotes liver carcinogenesis

    No full text
    In Western countries, a rising incidence of obesity and type 2 diabetes correlates with an increase of non-Alcoholic steatohepatitis (NASH)-A major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). NASH is associated with chronic liver injury, triggering hepatocyte death and enhanced translocation of intestinal bacteria, leading to persistent liver inflammation through activation of Toll-like receptors and their adapter protein myeloid differentiation factor 88 (MyD88). Therefore, we investigated the role of MyD88 during progression from NASH to HCC using a mouse model of chronic liver injury (hepatocyte-specific deletion of nuclear factor ?B essential modulator, Nemo; Nemo?hepa). Nemo?hepa; Nemo?hepa/MyD88-/- and Nemo?hepa/MyD88?hepa were generated and the impact on liver disease progression was investigated. Ubiquitous MyD88 ablation (Nemo?hepa/MyD88-/-) aggravated the degree of liver damage, accompanied by an overall decrease in inflammation, whereas infiltrating macrophages and natural killer cells were elevated. At a later stage, MyD88 deficiency impaired HCC formation. In contrast, hepatocyte-specific MyD88 deletion (Nemo?hepa/MyD88?hepa) did not affect disease progression. These results suggest that signaling of Toll-like receptors through MyD88 in non-parenchymal liver cells is required for carcinogenesis during chronic liver injury. Hence, blocking MyD88 signaling may offer a therapeutic option to prevent HCC formation in patients with NASH

    MyD88-dependent signaling in non-parenchymal cells promotes liver carcinogenesis

    Get PDF
    In Western countries, a rising incidence of obesity and type 2 diabetes correlates with an increase of non-alcoholic steatohepatitis (NASH)-a major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). NASH is associated with chronic liver injury, triggering hepatocyte death and enhanced translocation of intestinal bacteria, leading to persistent liver inflammation through activation of Toll-like receptors and their adapter protein myeloid differentiation factor 88 (MyD88). Therefore, we investigated the role of MyD88 during progression from NASH to HCC using a mouse model of chronic liver injury (hepatocyte-specific deletion of nuclear factor κB essential modulator, Nemo; NemoΔhepa). NemoΔhepa; NemoΔhepa/MyD88-/- and NemoΔhepa/MyD88Δhepa were generated and the impact on liver disease progression was investigated. Ubiquitous MyD88 ablation (NemoΔhepa/MyD88-/-) aggravated the degree of liver damage, accompanied by an overall decrease in inflammation, whereas infiltrating macrophages and natural killer cells were elevated. At a later stage, MyD88 deficiency impaired HCC formation. In contrast, hepatocyte-specific MyD88 deletion (NemoΔhepa/MyD88Δhepa) did not affect disease progression. These results suggest that signaling of Toll-like receptors through MyD88 in non-parenchymal liver cells is required for carcinogenesis during chronic liver injury. Hence, blocking MyD88 signaling may offer a therapeutic option to prevent HCC formation in patients with NASH
    corecore