441 research outputs found
Success factors for farming collectives
As the most intensive form of partnership in agriculture, farming collectives (FCs) place high demands on their participants. Based on a census of Swiss farming collectives, three success indicators are formed. The first and second describe interpersonal and economic success respectively, whilst the third encompasses overall success. Factors influencing success are determined by means of multiple regressions. Five predictor variables (compatibility with co-operation partner, trust, information quality, attitude of social environment, and relationship/kinship circle of the cooperation partner) accounted for 44 per cent of the variance in interpersonal success. Economic success was far more difficult to explain (R2 = 0.11). Even so, the influence of “soft” factors, even on the economic success of a farming collective, is striking. Above all, trust and the human and structural compatibility of the cooperation partners play an important role for all three types of success. The co-operation agreement, agricultural consultation, the number of participating people on the farm, and the investments made may be ranked as less important than previously assumed.farming collective, economic satisfaction, interpersonal conflicts, Agribusiness,
Strangeness Enhancement in and Interactions at SPS Energies
The systematics of strangeness enhancement is calculated using the HIJING and
VENUS models and compared to recent data on , and
collisions at CERN/SPS energies (). The HIJING model is used to
perform a {\em linear} extrapolation from to . VENUS is used to
estimate the effects of final state cascading and possible non-conventional
production mechanisms. This comparison shows that the large enhancement of
strangeness observed in collisions, interpreted previously as possible
evidence for quark-gluon plasma formation, has its origins in non-equilibrium
dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced
back to the change in the production dynamics %from to minimum bias
and central collisions. A factor of two enhancement of at
mid-rapidity is indicated by recent data, where on the average {\em one}
projectile nucleon interacts with only {\em two} target nucleons. There appears
to be another factor of two enhancement in the light ion reaction relative
to , when on the average only two projectile nucleons interact with two
target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil
A New Elimination Rule for the Calculus of Inductive Constructions
Published in the post-proceedings of TYPES but actually not presented orally to the conferenceInternational audienceIn Type Theory, definition by dependently-typed case analysis can be expressed by means of a set of equations — the semantic approach — or by an explicit pattern-matching construction — the syntactic approach. We aim at putting together the best of both approaches by extending the pattern-matching construction found in the Coq proof assistant in order to obtain the expressivity and flexibility of equation-based case analysis while remaining in a syntax-based setting, thus making dependently-typed programming more tractable in the Coq system. We provide a new rule that permits the omission of impossible cases, handles the propagation of inversion constraints, and allows to derive Streicher's K axiom. We show that subject reduction holds, and sketch a proof of relative consistency
Measurement induced quantum-classical transition
A model of an electrical point contact coupled to a mechanical system
(oscillator) is studied to simulate the dephasing effect of measurement on a
quantum system. The problem is solved at zero temperature under conditions of
strong non-equilibrium in the measurement apparatus. For linear coupling
between the oscillator and tunneling electrons, it is found that the oscillator
dynamics becomes damped, with the effective temperature determined by the
voltage drop across the junction. It is demonstrated that both the quantum
heating and the quantum damping of the oscillator manifest themselves in the
current-voltage characteristic of the point contact.Comment: in RevTex, 1 figure, corrected notatio
Quantum coherence and interaction-free measurements
We investigate the extent to which ``interaction-free'' measurements perturb
the state of quantum systems. We show that the absence of energy exchange
during the measurement is not a sufficient criterion to preserve that state, as
the quantum system is subject to measurement dependent decoherence. While it is
possible in general to design interaction-free measurement schemes that do
preserve that state, the requirement of quantum coherence preservation rapidly
leads to a very low efficiency. Our results, which have a simple interpretation
in terms of ``which-way'' arguments, open up the way to novel quantum
non-demolition techniques.Comment: 4 pages incl. 2 PostScript figures (.eps), LaTeX using RevTeX,
submitted to Phys. Rev. A (Rapid Comm.
Measurement of the Proton's Neutral Weak Magnetic Form Factor
We report the first measurement of the parity-violating asymmetry in elastic
electron scattering from the proton. The asymmetry depends on the neutral weak
magnetic form factor of the proton which contains new information on the
contribution of strange quark-antiquark pairs to the magnetic moment of the
proton. We obtain the value n.m. at
(GeV/c).Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
The meeting problem in the quantum random walk
We study the motion of two non-interacting quantum particles performing a
random walk on a line and analyze the probability that the two particles are
detected at a particular position after a certain number of steps (meeting
problem). The results are compared to the corresponding classical problem and
differences are pointed out. Analytic formulas for the meeting probability and
its asymptotic behavior are derived. The decay of the meeting probability for
distinguishable particles is faster then in the classical case, but not
quadratically faster. Entangled initial states and the bosonic or fermionic
nature of the walkers are considered
Comparative Analysis of the Mechanisms of Fast Light Particle Formation in Nucleus-Nucleus Collisions at Low and Intermediate Energies
The dynamics and the mechanisms of preequilibrium-light-particle formation in
nucleus-nucleus collisions at low and intermediate energies are studied on the
basis of a classical four-body model. The angular and energy distributions of
light particles from such processes are calculated. It is found that, at
energies below 50 MeV per nucleon, the hardest section of the energy spectrum
is formed owing to the acceleration of light particles from the target by the
mean field of the projectile nucleus. Good agreement with available
experimental data is obtained.Comment: 23 pages, 10 figures, LaTeX, published in Physics of Atomic Nuclei
v.65, No. 8, 2002, pp. 1459 - 1473 translated from Yadernaya Fizika v. 65,
No. 8, 2002, pp. 1494 - 150
Exclusive electroproduction of K+ Lambda and K+ Sigma^0 final states at Q^2 = 0.030-0.055 (GeV/c)^2
Cross section measurements of the exclusive p(e,e'K+)Lambda,Sigma^0
electroproduction reactions have been performed at the Mainz Microtron MAMI in
the A1 spectrometer facility using for the first time the Kaos spectrometer for
kaon detection. These processes were studied in a kinematical region not
covered by any previous experiment. The nucleon was probed in its third
resonance region with virtual photons of low four-momenta, Q^2= 0.030-0.055
(GeV/c)^2. The MAMI data indicate a smooth transition in Q^2 from
photoproduction to electroproduction cross sections. Comparison with
predictions of effective Lagrangian models based on the isobar approach reveal
that strong longitudinal couplings of the virtual photon to the N* resonances
can be excluded from these models.Comment: 16 pages, 7 figure
- …
