13,408 research outputs found

    Regional significance of volcanic geochemistry in the Far Triple Junction, Ethiopia

    Get PDF
    Regional significance of volcanic geochemistry in far Triple Junction, Ethiopi

    Structural geology of the African rift system: Summary of new data from ERTS-1 imagery

    Get PDF
    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated

    Mapping of the major structures of the African rift system

    Get PDF
    The author has identified the following significant results. The new fault map of the main Ethiopian rift, based on aerial photo compilations, generally agrees well with the maps produced from ERTS-1 imagery. Characteristically, the ERTS-1 imagery shows some of the major faults to be more extensive than realized from ground studies, though due to the angle of sun illumination some east-facing fault scarps are not easily discernible on the imagery. The Corbetti caldera, shows up surprisingly poor on the imagery, and is shown to be an adjunct to an older, larger caldera now occupied by Lakes Awassa and Shallo. The lithological boundaries mapped by De Paola in the rift are difficult to discern on the ERTS-1 imagery. On the Somalian plateau, east of the rift, a denuded caldera has been identified as the source of much of the lavas of the Batu Mountains. Further south, ERTS-1 imagery amplifies the structural and lithological mapping of the Precambrian rocks of the Shakisso-Arero area, and of the Kenya-Ethiopia border region. For the first time with some certainty, it is now possible to say that on the evidence of the ERTS-1 imagery, the Western Rift does not continue northeast beyond the Sudan-Uganda border, and is thus not to be sought in western Ethiopia

    Notes on the Afar triple junction

    Get PDF
    Geological anomalies of Afar and bordering plateau

    Ethiopian rift and plateaus - Some volcanic petrochemical differences

    Get PDF
    Volcanic petrochemical differences in Ethiopian rift and plateau

    QED self-energy contribution to highly-excited atomic states

    Get PDF
    We present numerical values for the self-energy shifts predicted by QED (Quantum Electrodynamics) for hydrogenlike ions (nuclear charge 60≤Z≤11060 \le Z \le 110) with an electron in an n=3n=3, 4 or 5 level with high angular momentum (5/2≤j≤9/25/2\le j \le 9/2). Applications include predictions of precision transition energies and studies of the outer-shell structure of atoms and ions.Comment: 20 pages, 5 figure

    Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation

    Get PDF
    The self-energy screening correction is evaluated in a model in which the effect of the screening electron is represented as a first-order perturbation of the self energy by an effective potential. The effective potential is the Coulomb potential of the spherically averaged charge density of the screening electron. We evaluate the energy shift due to a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron screening a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron, for nuclear charge Z in the range 5≤Z≤925 \le Z\le 92. A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table

    Modification of nuclear transitions in stellar plasma by electronic processes: K-isomers in 176Lu and 180Ta under s-process conditions

    Full text link
    The influence of the stellar plasma on the production and destruction of K-isomers is studied for the examples 176Lu and 180Ta. Individual electromagnetic transitions are enhanced predominantly by nuclear excitation by electron capture, whereas the other mechanisms of electron scattering and nuclear excitation by electron transition give only minor contributions. It is found that individual transitions can be enhanced significantly for low transition energies below 100 keV. Transitions with higher energies above 200 keV are practically not affected. Although one low-energy transition in 180Ta is enhanced by up to a factor of 10, the stellar transition rates from low-K to high-K states via so-called intermediate states in 176Lu and 180Ta do not change significantly under s-process conditions. The s-process nucleosynthesis of 176Lu and 180Ta remains essentially unchanged.Comment: 10 pages, 10 figures, Phys. Rev. C, accepte
    • …
    corecore