8 research outputs found

    Increased Sensitivity to Staphylococcal Enterotoxin B following Adenoviral Infection

    No full text
    Staphylococcal enterotoxin B induces toxic shock and is a major virulence factor of staphylococcal diseases. We examined the effects of systemic adenoviral infection on responses to staphylococcal enterotoxin B in a murine model. We found that adenoviral infection markedly increases the severity of liver injury following exposure to staphylococcal enterotoxin B without d-galactosamine sensitization. In adenovirus-infected mice, staphylococcal enterotoxin B triggered a more profound hypothermia and increased apoptosis in the liver. Consistent with these observations, we also found that adenoviral infection primed for an increased production of gamma interferon in vivo and in vitro following stimulation with staphylococcal enterotoxin B. Gamma-interferon-knockout mice did not show increased sensitivity to staphylococcal enterotoxin B following adenoviral infection. These data suggest that a preexisting viral infection primes mice for subsequent staphylococcal enterotoxin B exposure, possibly via a gamma-interferon-mediated mechanism

    Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC)

    No full text
    Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory syndrome coronavirus infection (PASC, or “long-COVID”). Exercise intolerance in PASC is associated with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It remains unclear whether the profound disturbances in metabolism that have been identified in plasma from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic and clinical data were retrospectively abstracted from the medical record. Compared to plasma of healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate), polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19 exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and higher levels of spermine and taurine. Of note, depletion of tryptophan—a hallmark of disease severity in COVID-19—is not normalized in PASC patients, despite normalization of kynurenine levels—a tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention focused on restoring mitochondrial fat-burning capacity

    Kinetics of the angiogenic response in lung endothelium following acute inflammatory injury with bleomycin

    No full text
    PURPOSE/AIM: Angiogenesis is a central component of normal wound healing but it has not been fully characterized in lung repair following acute inflammatory injury. The current literature lacks vital information pertaining to the extent, timing, and location of this process. This information is necessary for examining mechanisms that drive normal lung repair in resolving acute inflammatory injury. The goal of our study was to formally characterize lung angiogenesis over a time course of bleomycin induced lung injury. MATERIALS AND METHODS: Female C57BL/6 mice age 8-12 weeks were treated with a single dose of intratracheal bleomycin. Total lung endothelial cells were quantified with flow cytometry 0, 7, 14, 21, and 28 days following bleomycin administration, and endothelial cell replication was assessed using bromodeoxyuridine (BrdU) incorporation. RESULTS: Endothelial cell replication was maximal 14 days after bleomycin administration, while total lung endothelial cells peaked at day 21. Tissue analysis with stereology was performed to measure total lung vascular surface area in bleomycin at day 21 relative to controls and demonstrated a trend toward increased vasculature in the bleomycin group. CONCLUSIONS: Angiogenesis begins shortly after injury in the bleomycin model and leads to an expansion in the lung endothelial cell population that peaks at day 21. This study offers the first longitudinal examination of angiogenesis following acute inflammatory lung injury induced by bleomycin. Information provided in this study will be vital for further investigating mechanisms of angiogenesis in both normal and abnormal lung repair
    corecore