1,405 research outputs found

    Dentine decalcification and smear layer removal by different ethylenediaminetetraacetic acid and 1-hydroxyethane-1,1-diphosphonic acid species

    Full text link
    AIM To compare solutions of di- and tetrasodium ethylenediaminetetraacetic acid (EDTA) and 1-hydroxyethane-1,1-diphosphonic acid (HEDP) regarding their ability to solubilize calcium from dentine and remove smear layer. METHODOLOGY Solutions with a molarity corresponding to that of 17% Na EDTA (pH adjusted to 8.5) were prepared by dissolving Na and Na salts of HEDP (etidronate), or Na EDTA in deionized water. Standardized root dentine discs covered by a smear layer were prepared from human third molars. These discs (n = 10 per group) were immersed in test solutions or phosphate-buffered saline for 1 min. The dissolved Ca was determined by atomic absorption spectroscopy, apparently opened dentinal tubules by laser scanning microscopy and automated image analysis. Ca values were compared between groups by parametric, tubular areas by nonparametric methods, α = 0.05. RESULTS Solutions prepared from the tetrasodium salts were alkaline (pH 11.3-11.4), whilst counterparts made from the disodium salts were acidic. The EDTA solutions dissolved more calcium than the HEDP counterparts (P < 0.05); solutions prepared with the disodium salts dissolved more calcium than those made from the tetrasodium salts (P < 0.05). There was a high correlation between dissolved calcium and the apparently opened tubular areas (Spearman's ρ = 0.81). Differences between groups regarding opened tubules were similar to those observed regarding the Ca values, with a slightly reduced discerning power due to high variance. CONCLUSION Calcium chelation and thus smear layer removal by EDTA and HEDP are influenced by pH

    First-principles study of thin magnetic transition-metal silicide films on Si(001)

    Get PDF
    In order to combine silicon technology with the functionality of magnetic systems, a number of ferromagnetic (FM) materials have been suggested for the fabrication of metal/semiconductor heterojunctions. In this work, we present a systematic study of several candidate materials in contact with the Si surface. We employ density-functional theory calculations to address the thermodynamic stability and magnetism of both pseudomorphic CsCl-like MMSi (MM=Mn, Fe, Co, Ni) thin films and Heusler alloy M2M_2MnSi (MM=Fe, Co, Ni) films on Si(001). Our calculations show that Si-termination of the MMSi films is energetically preferable during epitaxy since it minimizes the energetic cost of broken bonds at the surface. Moreover, we can explain the calculated trends in thermodynamic stability of the MMSi thin films in terms of the MM-Si bond-strength and the MM 3d orbital occupation. From our calculations, we predict that ultrathin MnSi films are FM with sizable spin magnetic moments at the Mn atoms, while FeSi and NiSi films are nonmagnetic. However, CoSi films display itinerant ferromagnetism. For the M2M_2MnSi films with Heusler-type structure, the MnSi termination is found to have the highest thermodynamic stability. In the FM ground state, the calculated strength of the effective coupling between the magnetic moments of Mn atoms within the same layer approximately scales with the measured Curie temperatures of the bulk M2M_2MnSi compounds. In particular, the Co2_2MnSi/Si(001) thin film has a robust FM ground state as in the bulk, and is found to be stable against a phase separation into CoSi/Si(001) and MnSi/Si(001) films. Hence this material is of possible use in FM-Si heterojunctions and deserves further experimental investigations.Comment: 13 pages, 8 figure

    Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Get PDF
    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs

    Continuous isotopic composition measurements of tropospheric CO<sub>2</sub> at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events

    Get PDF
    A quantum cascade laser based absorption spectrometer (QCLAS) is applied for the first time to perform in situ, continuous and high precision isotope ratio measurements of CO<sub>2</sub> in the free troposphere. Time series of the three main CO<sub>2</sub> isotopologue mixing ratios (<sup>12</sup>C<sup>16</sup>CO<sub>2</sub>, <sup>13</sup>C<sup>16</sup>CO<sub>2</sub> and <sup>12</sup>C<sup>18</sup>O<sup>16</sup>O) have simultaneously been measured at one second time resolution over two years (from August 2008 to present) at the High Altitude Research Station Jungfraujoch (3580 m a.s.l., Switzerland). This work focuses on periods in February 2009 only, when sudden and pronounced enhancements in the tropospheric CO<sub>2</sub> were observed. These short-term changes were closely correlated with variations in CO mixing ratios measured at the same site, indicating combustion related emissions as potential source. The analytical precision of 0.046&permil; (at 50 s integration time) for both &delta;<sup>13</sup>C and &delta;<sup>18</sup>O and the high temporal resolution allowed the application of the Keeling plot method for source signature identification. The spatial origin of these CO<sub>2</sub> emission sources was then determined by backward Lagrangian particle dispersion simulations

    Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19

    Full text link
    The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex itinerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected

    Spontaneous separation of two-component Fermi gases in a double-well trap

    Full text link
    The two-component Fermi gas in a double-well trap is studied using the density functional theory and the density profile of each component is calculated within the Thomas-Fermi approximation. We show that the two components are spatially separate in the two wells once the repulsive interaction exceeds the Stoner point, signaling the occurrence of the ferromagnetic transition. Therefore, the double-well trap helps to explore itinerant ferromagnetism in atomic Fermi gases, since the spontaneous separation can be examined by measuring component populations in one well.Comment: 6 pages, 6 figures, to appear in ep

    H^\pm W^\mp production in the MSSM at the LHC

    Full text link
    We investigate the viability of observing charged Higgs bosons (H^\pm) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within the Minimal Supersymmetric Standard Model. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^\pm masses (~ m_t).Comment: 3 pages, LaTeX, 4 eps figures, uses jpconf.cls, talk given by S. Hesselbach at the 2007 Europhysics Conference on High Energy Physics, Manchester, England, 19-25 July 200

    Finite-temperature magnetism of Fex_xPd1x_{1-x} and Cox_xPt1x_{1-x} alloys

    Full text link
    The finite-temperature magnetic properties of Fex_xPd1x_{1-x} and Cox_xPt1x_{1-x} alloys have been investigated. It is shown that the temperature-dependent magnetic behaviour of alloys, composed of originally magnetic and non-magnetic elements, cannot be described properly unless the coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is included. A scheme for the calculation of the Curie temperature (TCT_C) for this type of systems is presented which is based on the extended Heisenberg Hamiltonian with the appropriate exchange parameters JijJ_{ij} obtained from {\em ab-initio} electronic structure calculations. Within the present study the KKR Green's function method has been used to calculate the JijJ_{ij} parameters. A comparison of the obtained Curie temperatures for Fex_xPd1x_{1-x} and Cox_xPt1x_{1-x} alloys with experimental data shows rather good agreement.Comment: 10 pages, 12 figure

    Field-dependent AC susceptibility of itinerant ferromagnets

    Full text link
    Whereas dc measurements of magnetic susceptibility, χ\chi, fail to distinguish between local and weak itinerant ferromagnets, radio-frequency (rf) measurements of χ\chi in the ferromagnetic state show dramatic differences between the two. We present sensitive tunnel-diode resonator measurements of χ\chi in the weak itinerant ferromagnet ZrZn2_2 at a frequency of 23 MHz. Below Curie temperature, TC26T_C \approx 26 K, the susceptibility is seen to increase and pass through a broad maximum at approximately 15 K in zero applied dc magnetic field. Application of a magnetic field reduces the amplitude of the maximum and shifts it to lower temperatures. The existence and evolution this maximum with applied field is not predicted by either the Stoner or self-consistent renormalized (SCR) spin fluctuations theories. For temperatures below TCT_C both theories derive a zero-field limit expression for χ\chi. We propose a semi-phenomenological model that considers the effect of the internal field from the polarized fraction of the conduction band on the remaining, unpolarized conduction band electrons. The developed model accurate describes the experimental data
    corecore