1,405 research outputs found
Dentine decalcification and smear layer removal by different ethylenediaminetetraacetic acid and 1-hydroxyethane-1,1-diphosphonic acid species
AIM
To compare solutions of di- and tetrasodium ethylenediaminetetraacetic acid (EDTA) and 1-hydroxyethane-1,1-diphosphonic acid (HEDP) regarding their ability to solubilize calcium from dentine and remove smear layer.
METHODOLOGY
Solutions with a molarity corresponding to that of 17% Na EDTA (pH adjusted to 8.5) were prepared by dissolving Na and Na salts of HEDP (etidronate), or Na EDTA in deionized water. Standardized root dentine discs covered by a smear layer were prepared from human third molars. These discs (n = 10 per group) were immersed in test solutions or phosphate-buffered saline for 1 min. The dissolved Ca was determined by atomic absorption spectroscopy, apparently opened dentinal tubules by laser scanning microscopy and automated image analysis. Ca values were compared between groups by parametric, tubular areas by nonparametric methods, α = 0.05.
RESULTS
Solutions prepared from the tetrasodium salts were alkaline (pH 11.3-11.4), whilst counterparts made from the disodium salts were acidic. The EDTA solutions dissolved more calcium than the HEDP counterparts (P < 0.05); solutions prepared with the disodium salts dissolved more calcium than those made from the tetrasodium salts (P < 0.05). There was a high correlation between dissolved calcium and the apparently opened tubular areas (Spearman's ρ = 0.81). Differences between groups regarding opened tubules were similar to those observed regarding the Ca values, with a slightly reduced discerning power due to high variance.
CONCLUSION
Calcium chelation and thus smear layer removal by EDTA and HEDP are influenced by pH
First-principles study of thin magnetic transition-metal silicide films on Si(001)
In order to combine silicon technology with the functionality of magnetic
systems, a number of ferromagnetic (FM) materials have been suggested for the
fabrication of metal/semiconductor heterojunctions. In this work, we present a
systematic study of several candidate materials in contact with the Si surface.
We employ density-functional theory calculations to address the thermodynamic
stability and magnetism of both pseudomorphic CsCl-like Si (=Mn, Fe, Co,
Ni) thin films and Heusler alloy MnSi (=Fe, Co, Ni) films on Si(001).
Our calculations show that Si-termination of the Si films is energetically
preferable during epitaxy since it minimizes the energetic cost of broken bonds
at the surface. Moreover, we can explain the calculated trends in thermodynamic
stability of the Si thin films in terms of the -Si bond-strength and the
3d orbital occupation. From our calculations, we predict that ultrathin
MnSi films are FM with sizable spin magnetic moments at the Mn atoms, while
FeSi and NiSi films are nonmagnetic. However, CoSi films display itinerant
ferromagnetism. For the MnSi films with Heusler-type structure, the MnSi
termination is found to have the highest thermodynamic stability. In the FM
ground state, the calculated strength of the effective coupling between the
magnetic moments of Mn atoms within the same layer approximately scales with
the measured Curie temperatures of the bulk MnSi compounds. In particular,
the CoMnSi/Si(001) thin film has a robust FM ground state as in the bulk,
and is found to be stable against a phase separation into CoSi/Si(001) and
MnSi/Si(001) films. Hence this material is of possible use in FM-Si
heterojunctions and deserves further experimental investigations.Comment: 13 pages, 8 figure
Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity
Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs
Continuous isotopic composition measurements of tropospheric CO<sub>2</sub> at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events
A quantum cascade laser based absorption spectrometer (QCLAS) is applied for the first time to perform in situ, continuous and high precision isotope ratio measurements of CO<sub>2</sub> in the free troposphere. Time series of the three main CO<sub>2</sub> isotopologue mixing ratios (<sup>12</sup>C<sup>16</sup>CO<sub>2</sub>, <sup>13</sup>C<sup>16</sup>CO<sub>2</sub> and <sup>12</sup>C<sup>18</sup>O<sup>16</sup>O) have simultaneously been measured at one second time resolution over two years (from August 2008 to present) at the High Altitude Research Station Jungfraujoch (3580 m a.s.l., Switzerland). This work focuses on periods in February 2009 only, when sudden and pronounced enhancements in the tropospheric CO<sub>2</sub> were observed. These short-term changes were closely correlated with variations in CO mixing ratios measured at the same site, indicating combustion related emissions as potential source. The analytical precision of 0.046‰ (at 50 s integration time) for both δ<sup>13</sup>C and δ<sup>18</sup>O and the high temporal resolution allowed the application of the Keeling plot method for source signature identification. The spatial origin of these CO<sub>2</sub> emission sources was then determined by backward Lagrangian particle dispersion simulations
Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19
The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by
electrical transport, AC and DC magnetization, heat capacity, x-ray
diffraction, resonant ultrasound spectroscopy, and first principles electronic
structure calculations. Complex itinerant ferromagnetism in this material is
indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC
susceptibility, and a weak heat capacity anomaly near the Curie temperature (88
K). The inclusion of spin wave excitations was found to be important in
modeling the low temperature heat capacity. The temperature dependence of the
elastic moduli and lattice constants, including negative thermal expansion
along the c axis at low temperatures, indicate strong magneto-elastic coupling
in this system. Calculations show strong evidence for itinerant ferromagnetism
and suggest a noncollinear ground state may be expected
Spontaneous separation of two-component Fermi gases in a double-well trap
The two-component Fermi gas in a double-well trap is studied using the
density functional theory and the density profile of each component is
calculated within the Thomas-Fermi approximation. We show that the two
components are spatially separate in the two wells once the repulsive
interaction exceeds the Stoner point, signaling the occurrence of the
ferromagnetic transition. Therefore, the double-well trap helps to explore
itinerant ferromagnetism in atomic Fermi gases, since the spontaneous
separation can be examined by measuring component populations in one well.Comment: 6 pages, 6 figures, to appear in ep
H^\pm W^\mp production in the MSSM at the LHC
We investigate the viability of observing charged Higgs bosons (H^\pm)
produced in association with W bosons at the CERN Large Hadron Collider, using
the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within the Minimal
Supersymmetric Standard Model. Performing a parton level study we show how the
irreducible Standard Model background from W + 2 jets can be controlled by
applying appropriate cuts. In the standard m_h^max scenario we find a viable
signal for large tan beta and intermediate H^\pm masses (~ m_t).Comment: 3 pages, LaTeX, 4 eps figures, uses jpconf.cls, talk given by S.
Hesselbach at the 2007 Europhysics Conference on High Energy Physics,
Manchester, England, 19-25 July 200
Finite-temperature magnetism of FePd and CoPt alloys
The finite-temperature magnetic properties of FePd and
CoPt alloys have been investigated. It is shown that the
temperature-dependent magnetic behaviour of alloys, composed of originally
magnetic and non-magnetic elements, cannot be described properly unless the
coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through
the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is
included. A scheme for the calculation of the Curie temperature () for
this type of systems is presented which is based on the extended Heisenberg
Hamiltonian with the appropriate exchange parameters obtained from
{\em ab-initio} electronic structure calculations. Within the present study the
KKR Green's function method has been used to calculate the parameters.
A comparison of the obtained Curie temperatures for FePd and
CoPt alloys with experimental data shows rather good agreement.Comment: 10 pages, 12 figure
Field-dependent AC susceptibility of itinerant ferromagnets
Whereas dc measurements of magnetic susceptibility, , fail to
distinguish between local and weak itinerant ferromagnets, radio-frequency (rf)
measurements of in the ferromagnetic state show dramatic differences
between the two. We present sensitive tunnel-diode resonator measurements of
in the weak itinerant ferromagnet ZrZn at a frequency of 23 MHz.
Below Curie temperature, K, the susceptibility is seen to
increase and pass through a broad maximum at approximately 15 K in zero applied
dc magnetic field. Application of a magnetic field reduces the amplitude of the
maximum and shifts it to lower temperatures. The existence and evolution this
maximum with applied field is not predicted by either the Stoner or
self-consistent renormalized (SCR) spin fluctuations theories. For temperatures
below both theories derive a zero-field limit expression for . We
propose a semi-phenomenological model that considers the effect of the internal
field from the polarized fraction of the conduction band on the remaining,
unpolarized conduction band electrons. The developed model accurate describes
the experimental data
- …