1,753 research outputs found

    Theory of spin-polarized scanning tunneling microscopy applied to local spins

    Full text link
    We provide a theory for scanning tunneling microscopy and spectroscopy using a spin-polarized tip. It it shown that the tunneling conductance can be partitioned into three separate contributions, a background conductance which is independent of the local spin, a dynamical conductance which is proportional to the local spin moment, and a conductance which is proportional to the noise spectrum of the local spin interactions. The presented theory is applicable to setups with magnetic tip and substrate in non-collinear arrangement, as well as for non-magnetic situations. The partitioning of the tunneling current suggests a possibility to extract the total spin moment of the local spin from the dynamical conductance. The dynamical conductance suggests a possibility to generate very high frequency spin-dependent ac currents and/or voltages. We also propose a measurement of the dynamical conductance that can be used to determine the character of the effective exchange interaction between individual spins in clusters. The third contribution to the tunneling current is associated with the spin-spin correlations induced by the exchange interaction between the local spin moment and the tunneling electrons. We demonstrate how this term can be used in the analysis of spin excitations recorded in conductance measurements. Finally, we propose to use spin-polarized scanning tunneling microscopy for detailed studies of the spin excitation spectrum.Comment: 12 pages, 4 figure, updated to match the published version, to appear in the Phys. Rev.

    The Effect of Flow at Maud Rise on the Sea Ice Cover - Numerical Experiments

    Get PDF
    The role of seamounts in the formation and evolution of sea ice isinvestigated in a series of numerical experiments with a coupled seaice-ocean model. Bottom topography, stratification and forcing areconfigured for the Maud Rise region in the Weddell Sea. The specificflow regime that develops at the seamount as the combined response tosteady and tidal forcing consists of free and trapped waves and aTaylor column, which is caused by mean flow and tidal flowrectification. The enhanced variability through tidal motion inparticular is capable of modifying the mixed layer above the seamountenough to delay and reduce sea ice formation throughout the winter.The induced sea ice anomaly spreads and moves westward and affects anarea of several 100~000 km2^{2}. Process studies reveal the complexinteraction between wind, steady and periodic ocean currents: allthree are required in the process of generation of the sea ice andmixed layer anomalies (mainly through tidal flow), their detachmentfrom the topography (caused by steady oceanic flow), and the westwardtranslation of the sea ice anomaly (driven by the time-mean wind)

    Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Get PDF
    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs

    Magnetic properties of 3d-impurities substituted in GaAs

    Full text link
    We have calculated the magnetic properties of substituted 3d-impurities (Cr-Ni) in a GaAs host by means of first principles electronic structure calculations. We provide a novel model explaining the ferromagnetic long rang order of III-V dilute magnetic semiconductors. The origin of the ferromagnetism is shown to be due to delocalized spin-uncompensated As dangling bond electrons. Besides the quantitative prediction of the magnetic moments, our model provides an understanding of the halfmetallicity, and the raise of the critical temperature with the impurity concentration

    Electronic structure and magnetism of equiatomic FeN

    Full text link
    In order to investigate the phase stability of equiatomic FeN compounds and the structure-dependent magnetic properties, the electronic structure and total energy of FeN with NaCl, ZnS and CsCl structures and various magnetic configurations are calculated using the first-principles TB-LMTO-ASA method. Among all the FeN phases considered, the antiferromagnetic NaCl structure with q=(00pi) is found to have the lowest energy at the theoretical equilibrium volume. However, the FM NaCl phase lies only 1mRyd higher. The estimated equilibrium lattice constant for nonmagnetic ZnS-type FeN agrees quite well with the experimental value, but for the AFM NaCl phase the estimated value is 6.7% smaller than that observed experimentally. For ZnS-type FeN, metastable magnetic states are found for volumes larger than the equilibrium value. On the basis of an analysis of the atom- and orbital-projected density of states and orbital-projected Crystal Orbital Hamilton Population, the iron-nitrogen interactions in NM ZnS, AFM NaCl and FM CsCl structures are discussed. The leading Fe-N interactions is due to the d-p iron-nitrogen hybridization, while considerable s-p and p-p hybridizations are also observed in all three phases. The iron magnetic moment in FeN is found to be highly sensitive to the nearest-neighboring Fe-N distance. In particular, the magnetic moment shows an abrupt drop from a value of about 2 muB to zero with the reduction of the Fe-N distance for the ZnS and CsCl structures.Comment: 12 pages, 6 figure

    Managment of diabetic ketoacidosis in children and adolescents in sub-Saharan Africa: A review

    Get PDF
    Background: Diabetic ketoacidosis (DKA) is a complex metabolic state of hyperglycaemia, ketosis, and acidosis. Diabetes in sub-Saharan Africa is, in many patients a serious disease with a poor prognosis. Most deaths, however, are due to preventable causes.Objective: To improve knowledge on the management of DKA in sub-Saharan Africa.Data sources: Literature review from different published sources. Data synthesis: Health systems in sub-Saharan Africa are currently organised for the treatment of episodes of illness and not long-term conditions like diabetes. Therefore the high rates of DKA is essentially due to lack of training of health professionals, lack of facilities in most hospitals, lack of public awareness as well as lack of health education to individual patients/families. In addition erratic insulin supply coupling with infections, low parental education, poor insulin storage and lack of facilities for self monitoring of blood glucose.Conclusion: A complex unfavourable social and economic environment is the basis of the high prevalence of DKA in sub-Saharan Africa. Several episodes of DKA can be prevented by effective public awareness programmes and education to healthcare providers

    Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19

    Full text link
    The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex itinerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected

    Measuring Client Experiences of Motivational Interviewing During a Lifestyle Intervention

    Get PDF
    The Client Evaluation of Motivational Interviewing was used to assess motivational interviewing experiences in a predominantly female, African American sample from the Southeastern United States who received motivational interviewing-based feedback during a multicomponent lifestyle intervention. Motivational interviewing was experienced differently than a primarily White, male, Northeastern mental health sample
    • …
    corecore