1,503 research outputs found

    Suspect Class Revisited: An Alternative View of Handicap

    Get PDF

    The electronic and magnetic properties of anion doped (C, N, S) GaFeO3; an ab initio DFT study

    Get PDF
    AbstractIn this study we present ab initio DFT calculations performed on stoichiometric and anion doped GaFeO3 substituting O by a C, N and S atom, respectively. Stoichiometric GaFeO3 has an antiferromagnetic (AFM) ground state. The Fe atoms of the sublattices Fe1 and Fe2 couple antiferromagnetically via the O atoms through the superexchange mechanism. Replacing the superexchange mediating O atom with p-elements of a different valence electron configuration changes the underlying magnetic exchange mechanism and influence the ground state properties. This may be used for tuning properties interesting for technical applications. Four different doping configurations were examined revealing a cell site dependent influence on the magnetic properties. Carbon, for example, changes the AFM coupling present in the Fe1–O–Fe2 configuration into a ferrimagnetic exchange for the Fe1–C–Fe2 bond. Depending on the respective cell site C substitution introduces a ferrimagnetic or AFM ground state. Nitrogen alters the ground state magnetic moment as well and sulfur introduces large structural distortions affecting the band gap and the overall AFM coupling inside the doped GaFeO3 simulation cell. We give a detailed discussion on the respective magnetic exchange mechanisms and electronic properties with regard to applications as photocatalysis and use the predictive power of ab initio DFT simulations that may trigger future experiments in the very promising field of tunable multifunctional devices

    Magnetic properties of 3d-impurities substituted in GaAs

    Full text link
    We have calculated the magnetic properties of substituted 3d-impurities (Cr-Ni) in a GaAs host by means of first principles electronic structure calculations. We provide a novel model explaining the ferromagnetic long rang order of III-V dilute magnetic semiconductors. The origin of the ferromagnetism is shown to be due to delocalized spin-uncompensated As dangling bond electrons. Besides the quantitative prediction of the magnetic moments, our model provides an understanding of the halfmetallicity, and the raise of the critical temperature with the impurity concentration

    Spontaneous separation of two-component Fermi gases in a double-well trap

    Full text link
    The two-component Fermi gas in a double-well trap is studied using the density functional theory and the density profile of each component is calculated within the Thomas-Fermi approximation. We show that the two components are spatially separate in the two wells once the repulsive interaction exceeds the Stoner point, signaling the occurrence of the ferromagnetic transition. Therefore, the double-well trap helps to explore itinerant ferromagnetism in atomic Fermi gases, since the spontaneous separation can be examined by measuring component populations in one well.Comment: 6 pages, 6 figures, to appear in ep

    Stable longitudinal associations of family income with children's hippocampal volume and memory persist after controlling for polygenic scores of educational attainment

    No full text
    Despite common notion that the correlation of socioeconomic status with child cognitive performance may be driven by both environmentally- and genetically-mediated transactional pathways, there is a lack of longitudinal and genetically informed research that examines these postulated associations. The present study addresses whether family income predicts associative memory growth and hippocampal development in middle childhood and tests whether these associations persist when controlling for DNA-based polygenic scores of educational attainment. Participants were 142 6-to-7-year-old children, of which 127 returned when they were 8-to-9 years old. Longitudinal analyses indicated that the association of family income with children's memory performance and hippocampal volume remained stable over this age range and did not predict change. On average, children from economically disadvantaged background showed lower memory performance and had a smaller hippocampal volume. There was no evidence to suggest that differences in memory performance were mediated by differences in hippocampal volume. Further exploratory results suggested that the relationship of income with hippocampal volume and memory in middle childhood is not primarily driven by genetic variance captured by polygenic scores of educational attainment, despite the fact that polygenic scores significantly predicted family income

    Continuous isotopic composition measurements of tropospheric CO<sub>2</sub> at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events

    Get PDF
    A quantum cascade laser based absorption spectrometer (QCLAS) is applied for the first time to perform in situ, continuous and high precision isotope ratio measurements of CO<sub>2</sub> in the free troposphere. Time series of the three main CO<sub>2</sub> isotopologue mixing ratios (<sup>12</sup>C<sup>16</sup>CO<sub>2</sub>, <sup>13</sup>C<sup>16</sup>CO<sub>2</sub> and <sup>12</sup>C<sup>18</sup>O<sup>16</sup>O) have simultaneously been measured at one second time resolution over two years (from August 2008 to present) at the High Altitude Research Station Jungfraujoch (3580 m a.s.l., Switzerland). This work focuses on periods in February 2009 only, when sudden and pronounced enhancements in the tropospheric CO<sub>2</sub> were observed. These short-term changes were closely correlated with variations in CO mixing ratios measured at the same site, indicating combustion related emissions as potential source. The analytical precision of 0.046&permil; (at 50 s integration time) for both &delta;<sup>13</sup>C and &delta;<sup>18</sup>O and the high temporal resolution allowed the application of the Keeling plot method for source signature identification. The spatial origin of these CO<sub>2</sub> emission sources was then determined by backward Lagrangian particle dispersion simulations

    Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19

    Full text link
    The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex itinerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected
    • …
    corecore