1,002 research outputs found
C-type related order in the defective fluorites La2Ce2O7 and Nd2Ce2O7 studied by neutron scattering and ab initio MD simulations
This work presents a structural investigation of La2-xNdxCe2O7 (x = 0.0, 0.5, 1.0, 1.5, 2.0) using X-ray powder diffraction and total scattering neutron powder diffraction, analysed using Rietveld and the reverse Monte Carlo method (RMC). Ab initio molecular dynamics (MD) modelling is also performed for further investigations of the local order. The main intensities in the neutron diffraction data for the La2-xNdxCe2O7 series correspond to the fluorite structure. However, additional C-type superlattice peaks are visible for x > 0 and increase in intensity with increasing x. The Nd-containing compositions (x > 0) are best fitted with Rietveld analysis by using a combination of oxygen deficient fluorite and oxygen excess C-type structures. No indications of cation order are found in the RMC or Rietveld analysis, and the absence of cation order is supported by the MD modelling. We argue that the superlattice peaks originate from oxygen vacancy ordering and associated shift in the cation position away from the ideal fluorite site similar to that in the C-type structure, which is seen from the Rietveld refinements and the observed ordering in the MD modelling. The vacancies favour alignments in the , and especially the direction. Moreover, we find that such ordering might also be found to a small extent in La2Ce2O7, explaining the discernible modulated background between the fluorite peaks. The observed overlap of the main Bragg peaks between the fluorite and C-type phase supports the co-existence of vacancy ordered and more disordered domains. This is further supported by the observed similarity of the radial distribution functions as modelled with MD. The increase in long range oxygen vacancy order with increasing Nd-content in La2-xNdxCe2O7 corresponds well with the lower oxide ion conductivity in Nd2Ce2O7 compared to La2Ce2O7 reported earlier
Stable longitudinal associations of family income with children's hippocampal volume and memory persist after controlling for polygenic scores of educational attainment
Despite common notion that the correlation of socioeconomic status with child cognitive performance may be driven by both environmentally- and genetically-mediated transactional pathways, there is a lack of longitudinal and genetically informed research that examines these postulated associations. The present study addresses whether family income predicts associative memory growth and hippocampal development in middle childhood and tests whether these associations persist when controlling for DNA-based polygenic scores of educational attainment. Participants were 142 6-to-7-year-old children, of which 127 returned when they were 8-to-9 years old. Longitudinal analyses indicated that the association of family income with children's memory performance and hippocampal volume remained stable over this age range and did not predict change. On average, children from economically disadvantaged background showed lower memory performance and had a smaller hippocampal volume. There was no evidence to suggest that differences in memory performance were mediated by differences in hippocampal volume. Further exploratory results suggested that the relationship of income with hippocampal volume and memory in middle childhood is not primarily driven by genetic variance captured by polygenic scores of educational attainment, despite the fact that polygenic scores significantly predicted family income
Spontaneous separation of two-component Fermi gases in a double-well trap
The two-component Fermi gas in a double-well trap is studied using the
density functional theory and the density profile of each component is
calculated within the Thomas-Fermi approximation. We show that the two
components are spatially separate in the two wells once the repulsive
interaction exceeds the Stoner point, signaling the occurrence of the
ferromagnetic transition. Therefore, the double-well trap helps to explore
itinerant ferromagnetism in atomic Fermi gases, since the spontaneous
separation can be examined by measuring component populations in one well.Comment: 6 pages, 6 figures, to appear in ep
Finite-temperature magnetism of FePd and CoPt alloys
The finite-temperature magnetic properties of FePd and
CoPt alloys have been investigated. It is shown that the
temperature-dependent magnetic behaviour of alloys, composed of originally
magnetic and non-magnetic elements, cannot be described properly unless the
coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through
the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is
included. A scheme for the calculation of the Curie temperature () for
this type of systems is presented which is based on the extended Heisenberg
Hamiltonian with the appropriate exchange parameters obtained from
{\em ab-initio} electronic structure calculations. Within the present study the
KKR Green's function method has been used to calculate the parameters.
A comparison of the obtained Curie temperatures for FePd and
CoPt alloys with experimental data shows rather good agreement.Comment: 10 pages, 12 figure
Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19
The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by
electrical transport, AC and DC magnetization, heat capacity, x-ray
diffraction, resonant ultrasound spectroscopy, and first principles electronic
structure calculations. Complex itinerant ferromagnetism in this material is
indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC
susceptibility, and a weak heat capacity anomaly near the Curie temperature (88
K). The inclusion of spin wave excitations was found to be important in
modeling the low temperature heat capacity. The temperature dependence of the
elastic moduli and lattice constants, including negative thermal expansion
along the c axis at low temperatures, indicate strong magneto-elastic coupling
in this system. Calculations show strong evidence for itinerant ferromagnetism
and suggest a noncollinear ground state may be expected
Thermodynamic Studies on Non Centrosymmetric Superconductors by AC Calorimetry under High Pressures
We investigated the non centrosymmetric superconductors CePtSi and UIr by
the ac heat capacity measurement under pressures. We determined the pressure
phase diagrams of these compounds. In CePtSi, the N\'{e}el temperature
= 2.2 K decreases with increasing pressure and becomes zero at the
critical pressure 0.6 GPa. On the other hand, the
superconducting phase exists in a wider pressure region from ambient pressure
to 1.5 GPa. The phase diagram of CePtSi is very
unique and has never been reported before for other heavy fermion
superconductors. In UIr, the heat capacity shows an anomaly at the Curie
temperature = 46 K at ambient pressure, and the heat capacity
anomaly shifts to lower temperatures with increasing pressure. The present
pressure dependence of was consistent with the previous studies by
the resistivity and magnetization measurements. Previous ac magnetic
susceptibility and resistivity measurements suggested the existence of three
ferromagnetic phases, FM1-3. shows a bending structure at 1.98,
2.21, and 2.40 GPa .The temperatures where these anomalies are observed are
close to the phase boundary of the FM3 phase.Comment: This paper was presented at the international workshop ``Novel
Pressure-induced Phenomena in Condensed Matter Systems(NP2CMS)" August 26-29
2006, Fukuoka Japa
Characterisation of gas reference materials for underpinning atmospheric measurements of stable isotopes of nitrous oxide
The precise measurement of the amount fraction of atmospheric
nitrous oxide (N2O) is required to understand global emission trends.
Analysis of the site-specific stable isotopic composition of N2O
provides a means to differentiate emission sources. The availability of
accurate reference materials of known N2O amount fractions and isotopic
composition is critical for achieving these goals. We present the
development of nitrous oxide gas reference materials for underpinning
measurements of atmospheric composition and isotope ratio. Uncertainties
target the World Metrological Organisation Global Atmosphere Watch (WMO-GAW) compatibility goal of 0.1 nmol mol−1 and extended compatibility goal of
0.3 nmol mol−1, for atmospheric N2O measurements in an amount
fraction range of 325–335 nmol mol−1. We also demonstrate the stability
of amount fraction and isotope ratio of these reference materials and
present a characterisation study of the cavity ring-down spectrometer used
for analysis of the reference materials.</p
Performance of a 229 Thorium solid-state nuclear clock
The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an
etalon transition in a new type of optical frequency standard. Here we discuss
the construction of a "solid-state nuclear clock" from Thorium nuclei implanted
into single crystals transparent in the vacuum ultraviolet range. We
investigate crystal-induced line shifts and broadening effects for the specific
system of Calcium fluoride. At liquid Nitrogen temperatures, the clock
performance will be limited by decoherence due to magnetic coupling of the
Thorium nucleus to neighboring nuclear moments, ruling out the commonly used
Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on
counting of flourescence photons and present optimized operation parameters.
Taking advantage of the high number of quantum oscillators under continuous
interrogation, a fractional instability level of 10^{-19} might be reached
within the solid-state approach.Comment: 28 pages, 9 figure
Emergence of magnetism in graphene materials and nanostructures
Magnetic materials and nanostructures based on carbon offer unique
opportunities for future technological applications such as spintronics. This
article reviews graphene-derived systems in which magnetic correlations emerge
as a result of reduced dimensions, disorder and other possible scenarios. In
particular, zero-dimensional graphene nanofragments, one-dimensional graphene
nanoribbons, and defect-induced magnetism in graphene and graphite are covered.
Possible physical mechanisms of the emergence of magnetism in these systems are
illustrated with the help of computational examples based on simple model
Hamiltonians. In addition, this review covers spin transport properties,
proposed designs of graphene-based spintronic devices, magnetic ordering at
finite temperatures as well as the most recent experimental achievements.Comment: tutorial-style review article -- 18 pages, 19 figure
- …