31 research outputs found

    Sugar Palm Fibre-Reinforced Unsaturated Polyester Composite Interface Characterisation by Pull-Out Test.

    Get PDF
    Polymer composites using natural fibres as the reinforcing agents have found their use in many applications. However, they do suffer from a few limitations, due to the hydrophilicity of the natural fibres which results in low compatibility with the hydrophobic polymer matrices. This paper aims to determine the best sugar palm (Arenga pinnata) fibre surface treatment to improve the fibre-matrix interfacial adhesion. Fibre surface modifications were carried out by water retting process where the fibres were immersed in sea water, pond water and sewage water for the period of 3 days. The test samples were fabricated by placing a single fibre in an unsaturated polyester resin. Single-fibre pull-out tests showed that freshwater-treated fibres possessed the highest interfacial shear strength, followed by untreated fibres, sewage water-treated fibres, and sea water-treated fibres. Further surface analyses of the samples were performed using a Scanning Electron Microscope (SEM) and an Energy Dispersive X-ray Spectroscopy (EDS) system. (2011) Trans Tech Publications

    The important role of concurrent engineering in product development process

    Get PDF
    Nowadays, Concurrent Engineering (CE) is becoming more important as companies compete in the worldwide market. Reduced time in product development process, higher product quality, lower cost in manufacturing process and fulfilment of customers' requirements are the key factors to determine the success of a company. To produce excellent products, the concept of Concurrent Engineering must be implemented. Concurrent Engineering is a systematic approach which can be achieved when all design activities are integrated and executed in a parallel manner. The CE approach has radically changed the method used in product development process in many companies. Thus, this paper reviews the basic principles and tools of Concurrent Engineering and discusses how to employ them. Similarly, to ensure a product development process in the CE environment to run smoothly and efficiently, some modifications of the existing product development processes are proposed; these should start from market investigation to detail design

    A study on motorcyclist's riding discomfort in Malaysia

    Get PDF
    Studies on discomfort among motorcyclists are seldom seen in literature. The current study was carried out using 957 respondents representing 481 males and 476 females ranging from the age of 18 to 24 years. It attempts to find out the overall discomfort score, the discomfort symptom score and the statistically significant differences on discomfort score among the male and female motorcyclists. A questionnaire survey was used to evaluate those discomfort symptoms. The results indicate that a majority of the male and female motorcyclists experienced discomfort in their body parts during the riding process. The motorcyclists mainly experienced discomfort on their upper body parts (neck or head, shoulder, upper back, arms and hands, low back and buttocks). The female compared to the male motorcyclists have expressed higher discomfort level in their thighs. Meanwhile a majority of both male and female motorcyclists have indicated no discomfort in their lower body parts (knees, calf leg below knee and ankles and feet). Meanwhile, the statistical tests indicate that there is a total of four significant differences (p<0.05) between the male and female motorcyclists. The significant differences were on low back, buttocks, thighs and calf leg below knees. As a conclusion, the results suggest that the motorcyclists in Malaysia do suffer from the discomfort on certain body part during riding. Therefore, this study highlights that there is a lack of motorcycle’s ergonomics particularly in the context of interaction between the riders and motorcycle in Malaysia

    Simulation and analysis for harvesting Dioscorea hispida tubers

    Get PDF
    This study discussed an analysis and simulation of fixture stand structure that will use for data collection of force required for harvesting the tubers of Dioscorea hispida. The tubers were surrounded by roots which were well gripped to the soil which made harvesting process difficult. Therefore, a new tool fixture equipped with digital force gauge device to gripped stem dioscorea hispida is required. Imada digital force measurement gauges are state-of-the-art, instruments capable of the highly accurate measurements required in quality testing to determine the strength or functionality of a part or product. The information from the experiments is used to model and simulate the tool in Computer Aided Design (CAD) environment. The solid modelling software Solidworks was used for the design, modelling and simulation of the equipment and the finite element analysis to determine the stress affected on various fixture designs

    Temperature profile of produced gas in oil palm biomass fluidized bed gasifier: effect of fibre/shell composition ratio

    Get PDF
    Malaysia is known to be one of the largest palm oil producers and also generates huge amounts of oil palm biomass, which is mainly treated as bio waste. One of the efficient methods to recycle this potential oil palm biomass could be gasification technology. Gasification is a process involving conversion of solid carbonaceous fuel into combustible gas using directly heated biomass. From processing of Fresh Fruit Bunch (FFB) (a biomass example), Empty Fruit Bunch (EFB) fibre, shell etc. are produced. In this study, a laboratory scale fluidized bed was developed, an appropriate fibre/shell composition ratio was studied and analysis on profiles of gas produced in the oil palm biomass fluidized bed gasifier was conducted. The effects of fibre/shell composition ratio and rate of reaction on temperature profiles were investigated. Temperature reaction rate and calorific value of oil palm biomass with gas compositions were also analyzed

    Lightweight and durable PVDF-SSPF composites for photovoltaics backsheet applications: thermal, optical and technical properties

    Get PDF
    Photovoltaic module backsheets are characterized according to their thermal, optical, mechanical, and technical properties. This work introduces new fabricated backsheets for PV modules using polyvinylidene fluoride (PVDF) reinforced with short sugar palm fiber (SSPF) composites. The preparation of composites undergoes multiple phases of fabrication. Thermal, optical, and technical investigations of their properties were conducted. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, in-situ scanning probe microscopy (SPM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and prolonged technical testing were accomplished to expansively understand the complex behavior of composites under various conditions. The optical properties of PV backsheets are critical components in determining the reflectance, absorbance, and transmittance of light. The PVDF–SSPF composites exhibited exceptional compatibility and thermal stability, further revealing a homogenous composite structure with enhanced interfacial bonding between the short fiber and polymer matrix

    Flammability, morphological and mechanical properties of sugar palm fiber/polyester yarn-reinforced epoxy hybrid biocomposites with magnesium hydroxide flame retardant filler

    Get PDF
    This paper aims to study the surface morphology, flammability and tensile properties of sugar palm fiber (SPF) hybrid with polyester (PET) yarn-reinforced epoxy composite with the addition of magnesium hydroxide (Mg(OH)2) as a flame retardant. The composites were prepared by hybridized epoxy and Mg(OH)2/PET with different amounts of SPF contents (0%, 20%, 35% and 50%) using the cold press method. Then these composites were tested by horizontal burning analysis, tensile strength testing and scanning electron microscopy (SEM) analysis. The specimen with 35% SPF (Epoxy/PET/SPF-35) with the incorporation of Mg(OH)2 as a flame retardant showed the lowest burning rate of 13.25 mm/min. The flame took a longer time to propagate along with the Epoxy/PET/SPF-35 specimen and at the same time producing char. Epoxy/PET/SPF-35 also had the highest tensile strength of 9.69 MPa. Tensile properties of the SPF hybrid with PET yarn (SPF/PET)-reinforced epoxy composite was decreased at 50% SPF content due to the lack of interfacial bonding between the fibers and matrix. Surface morphology analysis through SEM showed uniform distribution of the SPF and matrix with less adhesion, which increased the flammability and reduced the tensile properties of the hybrid polymeric composites. These composites have potential to be utilized in various applications, such as automotive components, building materials and in the aerospace industry

    Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites

    Get PDF
    This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites

    On the effects of geometrical shapes in failure modes in natural – conventional fiber reinforced composite tube: a review

    Get PDF
    Background: Natural and synthetic fibers are known for their low density, easier fabrication than metallic in several engineering applications. Furthermore, their structural rigidity is high and they can be used for advanced applications, such as aerospace applications and automotive industry sector. Methods: Owing to this in depth, studies had been conducted to evaluate its failure modes and process of fabrication for axial and lateral crushing behaviour to replace metallic materials. In this review paper, failure modes and geometrical designs such as shapes, triggering and geometry have been examined, where these factors are affected on crashworthiness parameters. The main aim of this review article is the reported work done in crushing behavior and failure modes of natural, synthetic and manufacturing technique process parameters on fibers reinforced composite tubes. Results: The results showed that the failure modes and crushing behavior in composite tubes depend on the type of material reinforced composite tubes and structure. Conclusion: The failure modes and crushing behavior in composite tubes depend on the type of material reinforced composite tubes and structure

    Crushing behaviour of plain weave composite hexagonal cellular structure

    Get PDF
    The tradition of fibre composite materials in energy absorbing tube applications has gained interest in structural collisions in the composite materials industry. Thus, the subject of this work is the experimental investigation to understand the effects of the failure initiator at the specimen’s edge, causing the increase in the specific absorbed energy (SEA), as well as the influence of the cellular structure composed of cells with small hexagonal angle exhibited high energy absorption capability. An extensive experimental investigation of an in plane crashing behavior of the composite hexagonal cellular structure between platen has been carried out. The cellular structure composed of hexagonal cells with angles varying between 45 and 60°. The materials used to accomplish the study are the plain weave E-glass fabric as a reinforcement and the epoxy resin system as a matrix. Furthermore, the specific energy absorption increases as the hexagonal angle increases
    corecore