6 research outputs found
Effect of Heavy Metals and Other Xenobiotics on Biodegradation of Waste Canola Oil by Cold-Adapted Rhodococcus sp. AQ5-07
The Antarctic is generally considered to be one of the most pristine areas in the world. However, both long and short-range pollutants are now known to be present in the Antarctic environment. Canola oil is an example of a polluting hydrocarbon that can be accidentally released into the Antarctic environment in oil wastewater treatment plants. The Antarctic soil bacterial strain Rhodococcus sp. AQ5-07, known to be capable of using waste canola oil (WCO) as its sole source of carbon, was tested for its ability to degrade canola oil in the presence of different heavy metals and xenobiotics. Rhodococcus sp. AQ5-07 was grown on minimum salt media containing different heavy metals (Zn, Co, Ni, Ag, Pb, Cu, Cr, Hg, Cd and As), xenobiotics (acrylamide and phenol) supplemented with 3% WCO. Three out of the 10 heavy metals tested (Hg, Cd and Ag) led a significant reduction in canola oil degradation at a concentration of 1 ppm. The IC50 values of Hg, Cd and Ag were 0.38, 0.45 and 0.32 ppm, respectively. The strain could also withstand 10 mg/L acrylamide, 50 mg/L phenol and 0.5% (v/v) diesel. This study confirmed the ability of Rhodococcus sp. AQ5-07 to degrade canola oil in the presence of various heavy metals and other xenobiotics, supporting its potential use in bioremediation of vegetable oil and wastewater treatments in low temperature environments
Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia
<p>Abstract</p> <p>Background</p> <p>Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.</p> <p>We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements.</p> <p>Results</p> <p>A total of 29 gene sequence variants were reported in 117(76.0%) of the studied subjects. Eight different mutations (1 large rearrangement, 1 short deletion, 5 missense mutations, and 1 splice site mutation), and 21 variants. Eight gene sequence variants were reported for the first time and they were noticed in familial hypercholesterolemic patients, but not in controls (p.Asp100Asp, p.Asp139His, p.Arg471Gly, c.1705+117 T>G, c.1186+41T>A, 1705+112C>G, Dup exon 12 and p.Trp666ProfsX45). The incidence of the p.Arg471Gly variant was 11%. Patients with pathogenic mutations were younger, had significantly higher incidences of cardiovascular disease, xanthomas, and family history of hyperlipidemia, together with significantly higher total cholesterol and low density lipoprotein levels than patients with non-pathogenic variants.</p> <p>Conclusions</p> <p>Twenty-nine gene sequence variants occurred among FH patients; those with predicted pathogenicity were associated with higher incidences of cardiovascular diseases, tendon xanthomas, and higher total and low density lipoprotein levels compared to the rest. These results provide preliminary information on the mutation spectrum of this gene among patients with FH in Malaysia.</p
Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups
Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia
Effect of heavy metals and other xenobiotics on biodegradation of waste canola oil by cold-adapted Rhodococcus sp. strain AQ5-07
The Antarctic is generally considered to be one of the most pristine areas in the world. However, both long and short-range pollutants are now known to be present in the Antarctic environment. Canola oil is an example of a polluting hydrocarbon that can be accidentally released into the Antarctic environment in oil wastewater treatment plants. The Antarctic soil bacterial strain Rhodococcus sp. AQ5-07, known to be capable of using waste canola oil (WCO) as its sole source of carbon, was tested for its ability to degrade canola oil in the presence of different heavy metals and xenobiotics. Rhodococcus sp. AQ5-07 was grown on minimum salt media containing different heavy metals (Zn, Co, Ni, Ag, Pb, Cu, Cr, Hg, Cd and As), xenobiotics (acrylamide and phenol) supplemented with 3% WCO. Three out of the 10 heavy metals tested (Hg, Cd and Ag) led a significant reduction in canola oil degradation at a concentration of 1 ppm. The IC50values of Hg, Cd and Ag were 0.38, 0.45 and 0.32 ppm, respectively. The strain could also withstand 10 mg/L acrylamide, 50 mg/L phenol and 0.5% (v/v) diesel. This study confirmed the ability of Rhodococcus sp. AQ5-07 to degrade canola oil in the presence of various heavy metals and other xenobiotics, supporting its potential use in bioremediation of vegetable oil and wastewater treatments in low temperature environments