4 research outputs found

    Current and Potential Developments of Cortisol Aptasensing towards Point-of-Care Diagnostics (POTC)

    Get PDF
    Anxiety is a psychological problem that often emerges during the normal course of human life. The detection of anxiety often involves a physical exam and a self-reporting questionnaire. However, these approaches have limitations, as the data might lack reliability and consistency upon application to the same population over time. Furthermore, there might be varying understanding and interpretations of the particular question by the participant, which necessitating the approach of using biomarker-based measurement for stress diagnosis. The most prominent biomarker related to stress, hormone cortisol, plays a key role in the fight-or-flight situation, alters the immune response, and suppresses the digestive and the reproductive systems. We have taken the endeavour to review the available aptamer-based biosensor (aptasensor) for cortisol detection. The potential point-of-care diagnostic strategies that could be harnessed for the aptasensing of cortisol were also envisaged

    Aptasensor for the Detection of Mycobacterium tuberculosis in Sputum Utilising CFP10-ESAT6 Protein as a Selective Biomarker

    No full text
    A portable electrochemical aptamer-antibody based sandwich biosensor has been designed and successfully developed using an aptamer bioreceptor immobilized onto a screen-printed electrode surface for Mycobacterium tuberculosis (M. tuberculosis) detection in clinical sputum samples. In the sensing strategy, a CFP10-ESAT6 binding aptamer was immobilized onto a graphene/polyaniline (GP/PANI)-modified gold working electrode by covalent binding via glutaraldehyde linkage. Upon interaction with the CFP10-ESAT6 antigen target, the aptamer will capture the target where the nano-labelled Fe3O4/Au MNPs conjugated antibody is used to complete the sandwich format and enhance the signal produced from the aptamer–antigen interaction. Using this strategy, the detection of CFP10-ESAT6 antigen was conducted in the concentration range of 5 to 500 ng/mL. From the analysis, the detection limit was found to be 1.5 ng/mL, thereby demonstrating the efficiency of the aptamer as a bioreceptor. The specificity study was carried out using bovine serum albumin (BSA), MPT64, and human serum, and the result demonstrated good specificity that is 7% higher than the antibody–antigen interaction reported in a previous study. The fabricated aptasensor for M. tuberculosis analysis shows good reproducibility with an relative standard deviation (RSD) of 2.5%. Further analysis of M. tuberculosis in sputum samples have shown good correlation with the culture method with 100% specificity and sensitivity, thus making the aptasensor a promising candidate for M. tuberculosis detection considering its high specificity and sensitivity with clinical samples

    Enhanced Electrochemical Conductivity of Surface-Coated Gold Nanoparticles/Copper Nanowires onto Screen-Printed Gold Electrode

    No full text
    Electrochemical application has been widely used in the study of biosensors. Small biomolecules need a sensitive sensor, as the transducer that can relay the signal produced by biomolecule interactions. Therefore, we are improvising a sensor electrode to enhance electrochemical conductivity for the detection of small DNA molecule interaction. This work describes the enhanced electrochemical conductivity studies of copper nanowires/gold nanoparticles (CuNWs/AuNPs), using the screen-printed gold electrode (SPGE). The AuNPs were synthesized using the Turkevich method as well as characterized by the high-resolution transmission electron microscopy (HRTEM) and ultraviolet-visible (UV-Vis) analysis for the particle size and absorption nature, respectively. Further, the surface morphology and elemental analysis of a series of combinations of different ratios of CuNWs-AuNPs-modified SPGE were analyzed by field emission scanning electron microscopy (FESEM) combined with an energy dispersive X-ray (EDX). The results indicate that the nanocomposites of CuNWs-AuNPs have been randomly distributed and compacted on the surface of SPGE, with AuNPs filling the pores of CuNWs, thereby enhancing its electrochemical conductivity. The cyclic voltammetry (CV) method was used for the evaluation of SPGE performance, while the characterization of the electrochemical conductivity of the electrode modified with various concentrations of AuNPs, CuNWs, and different volumes of dithiopropionic acid (DTPA) has been conducted. Of the various parameters tested, the SPGE modified with a mixture of 5 mg/mL CuNWs and 0.25 mM AuNPs exhibited an efficient electrochemical conductivity of 20.3 µA. The effective surface area for the CuNWs-AuNPs-modified SPGE was enhanced by 2.3-fold compared with the unmodified SPGE, thereby conforming the presence of a large active biomolecule interaction area and enhanced electrochemical activity on the electrode surface, thus make it promising for biosensor application

    Enhanced electrochemical conductivity of surface-coated gold nanoparticles/copper nanowires onto screen-printed gold electrode

    No full text
    Electrochemical application has been widely used in the study of biosensors. Small biomolecules need a sensitive sensor, as the transducer that can relay the signal produced by biomolecule interactions. Therefore, we are improvising a sensor electrode to enhance electrochemical conductivity for the detection of small DNA molecule interaction. This work describes the enhanced electrochemical conductivity studies of copper nanowires/gold nanoparticles (CuNWs/AuNPs), using the screen-printed gold electrode (SPGE). The AuNPs were synthesized using the Turkevich method as well as characterized by the high-resolution transmission electron microscopy (HRTEM) and ultraviolet-visible (UV-Vis) analysis for the particle size and absorption nature, respectively. Further, the surface morphology and elemental analysis of a series of combinations of different ratios of CuNWs-AuNPs-modified SPGE were analyzed by field emission scanning electron microscopy (FESEM) combined with an energy dispersive X-ray (EDX). The results indicate that the nanocomposites of CuNWs-AuNPs have been randomly distributed and compacted on the surface of SPGE, with AuNPs filling the pores of CuNWs, thereby enhancing its electrochemical conductivity. The cyclic voltammetry (CV) method was used for the evaluation of SPGE performance, while the characterization of the electrochemical conductivity of the electrode modified with various concentrations of AuNPs, CuNWs, and different volumes of dithiopropionic acid (DTPA) has been conducted. Of the various parameters tested, the SPGE modified with a mixture of 5 mg/mL CuNWs and 0.25 mM AuNPs exhibited an efficient electrochemical conductivity of 20.3 µA. The effective surface area for the CuNWs-AuNPs-modified SPGE was enhanced by 2.3-fold compared with the unmodified SPGE, thereby conforming the presence of a large active biomolecule interaction area and enhanced electrochemical activity on the electrode surface, thus make it promising for biosensor application
    corecore