3 research outputs found

    Spectrum of infections in different regimens of post-induction chemotherapy in acute myeloid leukemia (de-novo): A comparative retrospective study

    No full text
    Background: Patients diagnosed with acute myeloid leukemia (AML) face a heightened susceptibility to infections, which significantly elevates their risk of mortality and disability. The intensity of the chemotherapy treatment and its specific focus on inhibiting myeloid cell divisions render patients especially vulnerable, particularly during the early stages of chemotherapy. This vulnerability is compounded by the occurrence of repeated episodes of prolonged neutropenia, leaving patients highly susceptible to infections. The compromised immune systems of these individuals make them more susceptible to infections, which adversely affect their physical health and overall well-being. Consequently, our study aimed to investigate the range of infections experienced by patients with newly diagnosed AML undergoing different induction chemotherapy. Methods: This was a comparative retrospective study, conducted at a tertiary hospital providing comprehensive cancer care in North India. All newly diagnosed patients with AML, who received induction chemotherapy from January 1, 2012 to November 1, 2022, were identified from the hospital database and included in this study. Results: Four hundred and twenty AML patients treated with either high-intensity or low-intensity induction chemotherapy was observed in this study. It was found that patients who received high-intensity treatment had a higher rate of clinically and microbiologically documented infections, fever without a known cause, and more cases of febrile neutropenia than those who got low-intensity treatment. These differences between the two groups were particularly evident on day 14 (p = 0.0002) and persisted through day 28 (p = 0.005). Conclusions: These findings underscore the effectiveness and downside of high-intensity induction chemotherapy regimens, as evidenced by the higher incidence of infections observed. Further investigation through prospective clinical studies is warranted to better evaluate and validate the efficacy of this approach

    Association of inflammatory markers with severity of disease and mortality in COVID-19 patients: a systematic review and meta-analysis

    No full text
    Literature suggests association of inflammatory markers with the severity and mortality related to COVID-19, but there are varying conclusions available. We aimed to provide an overview of the association of inflammatory markers with the severity and mortality of COVID-19 patients

    Network pharmacology and molecular docking study-based approach to explore mechanism of benzimidazole-based anthelmintics for the treatment of lung cancer

    No full text
    Emerging studies have reported the potential anticancer activity of benzimidazole-based anthelmintics (BBA) against lung cancer (LC). However, mechanism underlying the anticancer activity of BBA is unclear. Therefore, in the current study, network pharmacology and molecular docking-based approach were used to explore the potential molecular mechanism for the treatment of LC. The potential targets for BBA were obtained from multiple databases including SwissTargetPrediction, Drug Bank, Therapeutic Target Database, and Comparative Toxicogenomics Database while LC targets were collected from DisGeNet gene discovery platform, Integrated Genomic Database of NSCLC, Catalogue of Somatic Mutations in Cancer and Online Mendelian Inheritance in Man database. Protein-protein interaction (PPI) diagram of common targets was constructed using STRING online platform. Topological analysis was performed using Cytoscape and gene enrichment analysis was conducted using FunRich software. Highest degree targets were then confirmed using molecular docking and molecular dynamics simulations. The BBA were prioritized according to their S scores, with ricobendazole ranking highest followed by flubendazole, fenbendazole, mebendazole, triclabendazole, albendazole, oxibendazole, parbendazole, thiabendazole and oxfendazole. The potential targets of BBA identified using topological analysis and molecular docking were found to be CCND1 (cyclin D1), EGFR (Epidermal Growth Factor Receptor), ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2/CD340), PTGS2 (Prostaglandin-endoperoxide synthase 2), and SRC (Proto-oncogene tyrosine-protein kinase). Furthermore, molecular dynamics confirmed that CCND1 and EGFR are the potential targets of ricobendazole for the treatment of LC. BBA can be further explored as a therapeutic strategy for the treatment of lung cancer under in vitro and in vivo studies. Communicated by Ramaswamy H. Sarma</p
    corecore