13 research outputs found

    Social media for cardiac imagers: a review.

    Get PDF
    Cardiac imaging plays a pivotal role in the diagnosis and management of cardiovascular diseases. In the burgeoning landscape of digital technology and social media platforms, it becomes essential for cardiac imagers to know how to effectively increase the visibility and the impact of their activity. With the availability of social sites like X (formerly Twitter), Instagram and Facebook, cardiac imagers can now reach a wider audience and engage with peers, sharing their findings, insights, and discussions. The integration of persistent identifiers, such as Digital Object Identifiers (DOIs), facilitates traceability and citation of cardiac imaging publications across various digital platforms, further enhancing their discoverability. To maximize visibility, practical advice is provided, including the use of visually engaging infographics and videos, as well as the strategic implementation of relevant hashtags and keywords. These techniques can significantly improve the discoverability of cardiac imaging research through search engine optimization and social media algorithms. Tracking impact and engagement is crucial in the digital age, and this review discusses various metrics and tools to gauge the reach and influence of cardiac imaging publications. This includes traditional citation-based metrics and altmetrics. Moreover, this review underscores the importance of creating and updating professional profiles on social platforms and participating in relevant scientific communities online. The adoption of digital technology, social platforms, and a strategic approach to publication sharing can empower cardiac imaging professionals to enhance the visibility and impact of their research, ultimately advancing the field and improving patient care

    Molecular Modeling of Disease Causing Mutations in Domain C1 of cMyBP-C

    Get PDF
    Cardiac myosin binding protein-C (cMyBP-C) is a multi-domain (C0-C10) protein that regulates heart muscle contraction through interaction with myosin, actin and other sarcomeric proteins. Several mutations of this protein cause familial hypertrophic cardiomyopathy (HCM). Domain C1 of cMyBP-C plays a central role in protein interactions with actin and myosin. Here, we studied structure-function relationship of three disease causing mutations, Arg177His, Ala216Thr and Glu258Lys of the domain C1 using computational biology techniques with its available X-ray crystal structure. The results suggest that each mutation could affect structural properties of the domain C1, and hence it's structural integrity through modifying intra-molecular arrangements in a distinct mode. The mutations also change surface charge distributions, which could impact the binding of C1 with other sarcomeric proteins thereby affecting contractile function. These structural consequences of the C1 mutants could be valuable to understand the molecular mechanisms for the disease

    A comparative study of mutation screening of sarcomeric genes (MYBPC3, MYH7, TNNT2) using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt

    Get PDF
    Background: NGS enables simultaneous sequencing of large numbers of associated genes in genetic heterogeneous disorders, in a more rapid and cost-effective manner than traditional technologies. However there have been limited direct comparisons between NGS and more established technologies to assess the sensitivity and false negative rates of this new approach. The scope of the present manuscript is to compare variants detected in MYBPC3, MYH7 and TNNT2 genes using the stepwise dHPLC/ Sanger versus targeted NGS.Methods: In this study, we have analysed a group of 150 samples of patients from the Bibliotheca Alexandrina-Aswan Heart Centre National HCM program. The genetic testing was simultaneously undertaken by high throughput denaturing high-performance liquid chromatography (dHPLC) followed by Sanger based sequencing and targeted next generation deep sequencing using panel of inherited cardiac genes (ICC). The panel included over 100 genes including the 3 sarcomeric genes. Analysis of the sequencing data of the 3 genes was undertaken in a double blinded strategy.Results: NGS analysis detected all pathogenic and likely pathogenic variants identified by dHPLC (50 in total, some samples had double hits). There was a 0% false negative rate for NGS based analysis. Nineteen variants were missed by dHPLC and detected by NGS, thus increasing the diagnostic yield in this co- analysed cohort from 22.0% (33/150) to 31.3% (47/150). Of interest to note that the mutation spectrum in this Egyptian HCM population revealed a high rate of homozygosity in MYBPC3 and MYH7 genes in comparison to other population studies (6/150, 4%). None of the homozygous samples were detected by dHPLC analysis.Conclusion: NGS provides a useful and rapid tool to allow panoramic screening of several genes simultaneously with a high sensitivity rate amongst genes of known etiologic role allowing high throughput analysis of HCM patients and relevant control series in a less characterised population
    corecore