163 research outputs found
On the degree conjecture for separability of multipartite quantum states
We settle the so-called degree conjecture for the separability of
multipartite quantum states, which are normalized graph Laplacians, first given
by Braunstein {\it et al.} [Phys. Rev. A \textbf{73}, 012320 (2006)]. The
conjecture states that a multipartite quantum state is separable if and only if
the degree matrix of the graph associated with the state is equal to the degree
matrix of the partial transpose of this graph. We call this statement to be the
strong form of the conjecture. In its weak version, the conjecture requires
only the necessity, that is, if the state is separable, the corresponding
degree matrices match. We prove the strong form of the conjecture for {\it
pure} multipartite quantum states, using the modified tensor product of graphs
defined in [J. Phys. A: Math. Theor. \textbf{40}, 10251 (2007)], as both
necessary and sufficient condition for separability. Based on this proof, we
give a polynomial-time algorithm for completely factorizing any pure
multipartite quantum state. By polynomial-time algorithm we mean that the
execution time of this algorithm increases as a polynomial in where is
the number of parts of the quantum system. We give a counter-example to show
that the conjecture fails, in general, even in its weak form, for multipartite
mixed states. Finally, we prove this conjecture, in its weak form, for a class
of multipartite mixed states, giving only a necessary condition for
separability.Comment: 17 pages, 3 figures. Comments are welcom
Some Observations on the Topological Resonance Energy of Benzenoid Hydrocarbons
Two empirical rules are formulated for the topological resonance
energy (TRE) of benzenoid hydrocarbons: (a) TRE is roughly
linear function of the number of Kekule structures, and (b) in
a homologous series containing a linear polyacene fragment, TRE
is a linear function of the length of this fragment.
In certain cases, however, the TRE model leads to incorrect
predictions. There exist pairs of isomeric benzenoid hydrocarbons,
in which the isomer with a greater number of Kekule structures
has smaller TRE.
The present study indicates that the TRE model needs to be
critically revised
Obstacle Numbers of Planar Graphs
Given finitely many connected polygonal obstacles in the
plane and a set of points in general position and not in any obstacle, the
{\em visibility graph} of with obstacles is the (geometric)
graph with vertex set , where two vertices are adjacent if the straight line
segment joining them intersects no obstacle. The obstacle number of a graph
is the smallest integer such that is the visibility graph of a set of
points with obstacles. If is planar, we define the planar obstacle
number of by further requiring that the visibility graph has no crossing
edges (hence that it is a planar geometric drawing of ). In this paper, we
prove that the maximum planar obstacle number of a planar graph of order is
, the maximum being attained (in particular) by maximal bipartite planar
graphs. This displays a significant difference with the standard obstacle
number, as we prove that the obstacle number of every bipartite planar graph
(and more generally in the class PURE-2-DIR of intersection graphs of straight
line segments in two directions) of order at least is .Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Rigidity and volume preserving deformation on degenerate simplices
Given a degenerate -simplex in a -dimensional space
(Euclidean, spherical or hyperbolic space, and ), for each , , Radon's theorem induces a partition of the set of -faces into two
subsets. We prove that if the vertices of the simplex vary smoothly in
for , and the volumes of -faces in one subset are constrained only to
decrease while in the other subset only to increase, then any sufficiently
small motion must preserve the volumes of all -faces; and this property
still holds in for if an invariant of
the degenerate simplex has the desired sign. This answers a question posed by
the author, and the proof relies on an invariant we discovered
for any -stress on a cell complex in . We introduce a
characteristic polynomial of the degenerate simplex by defining
, and prove that the roots
of are real for the Euclidean case. Some evidence suggests the same
conjecture for the hyperbolic case.Comment: 27 pages, 2 figures. To appear in Discrete & Computational Geometr
Contact Representations of Graphs in 3D
We study contact representations of graphs in which vertices are represented
by axis-aligned polyhedra in 3D and edges are realized by non-zero area common
boundaries between corresponding polyhedra. We show that for every 3-connected
planar graph, there exists a simultaneous representation of the graph and its
dual with 3D boxes. We give a linear-time algorithm for constructing such a
representation. This result extends the existing primal-dual contact
representations of planar graphs in 2D using circles and triangles. While
contact graphs in 2D directly correspond to planar graphs, we next study
representations of non-planar graphs in 3D. In particular we consider
representations of optimal 1-planar graphs. A graph is 1-planar if there exists
a drawing in the plane where each edge is crossed at most once, and an optimal
n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a
linear-time algorithm for representing optimal 1-planar graphs without
separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph
admits a representation with boxes. Hence, we consider contact representations
with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a
quadratic-time algorithm for representing optimal 1-planar graph with L-shaped
polyhedra
Essential self-adjointness of magnetic Schr\"odinger operators on locally finite graphs
We give sufficient conditions for essential self-adjointness of magnetic
Schr\"odinger operators on locally finite graphs. Two of the main theorems of
the present paper generalize recent results of Torki-Hamza.Comment: 14 pages; The present version differs from the original version as
follows: the ordering of presentation has been modified in several places,
more details have been provided in several places, some notations have been
changed, two examples have been added, and several new references have been
inserted. The final version of this preprint will appear in Integral
Equations and Operator Theor
Self-avoiding walks and connective constants
The connective constant of a quasi-transitive graph is the
asymptotic growth rate of the number of self-avoiding walks (SAWs) on from
a given starting vertex. We survey several aspects of the relationship between
the connective constant and the underlying graph .
We present upper and lower bounds for in terms of the
vertex-degree and girth of a transitive graph.
We discuss the question of whether for transitive
cubic graphs (where denotes the golden mean), and we introduce the
Fisher transformation for SAWs (that is, the replacement of vertices by
triangles).
We present strict inequalities for the connective constants
of transitive graphs , as varies.
As a consequence of the last, the connective constant of a Cayley
graph of a finitely generated group decreases strictly when a new relator is
added, and increases strictly when a non-trivial group element is declared to
be a further generator.
We describe so-called graph height functions within an account of
"bridges" for quasi-transitive graphs, and indicate that the bridge constant
equals the connective constant when the graph has a unimodular graph height
function.
A partial answer is given to the question of the locality of
connective constants, based around the existence of unimodular graph height
functions.
Examples are presented of Cayley graphs of finitely presented
groups that possess graph height functions (that are, in addition, harmonic and
unimodular), and that do not.
The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with
arXiv:1304.721
Network synchronization: Optimal and Pessimal Scale-Free Topologies
By employing a recently introduced optimization algorithm we explicitely
design optimally synchronizable (unweighted) networks for any given scale-free
degree distribution. We explore how the optimization process affects
degree-degree correlations and observe a generic tendency towards
disassortativity. Still, we show that there is not a one-to-one correspondence
between synchronizability and disassortativity. On the other hand, we study the
nature of optimally un-synchronizable networks, that is, networks whose
topology minimizes the range of stability of the synchronous state. The
resulting ``pessimal networks'' turn out to have a highly assortative
string-like structure. We also derive a rigorous lower bound for the Laplacian
eigenvalue ratio controlling synchronizability, which helps understanding the
impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex
Networks 2007
Spectral Graph Analysis for Process Monitoring
Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentin
- …