3,958 research outputs found

    Low scale B-L extension of the Standard Model at the LHC

    Get PDF
    The fact that neutrinos are massive indicates that the Standard Model (SM) requires extension. We propose a low energy (<TeV) B-L extension of the SM, which is based on the gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}. We show that this model provides a natural explanation for the presence of three right-handed neutrinos in addition to an extra gauge boson and a new scalar Higgs. Therefore, it can lead to very interesting phenomenological implications different from the SM results which can be tested at the LHC. Also we analyze the muon anomalous magnetic moment in this class of models. We show that one-loop with exchange Z' may give dominant new contribution ~ few x 10^{-11}.Comment: 12 page

    Neutrino mixing and CP violation from Dirac-Majorana bimaximal mixture and quark-lepton unification

    Full text link
    We demonstrate that only two ansatz can produce the features of the neutrino mixing angles. The first ansatz comes from the quark-lepton grand unification; ÎœDi=VCKMΜα\nu_{Di} = V_{CKM} \nu_{\alpha} is satisfied for left-handed neutrinos, where ÎœDi\nu_{Di} are the Dirac mass eigenstates and Μα\nu_{\alpha} are the flavour eigenstates. The second ansatz comes from the assumption; ÎœDi=UbimaximalÎœi\nu_{Di} = U_{bimaximal} \nu_{i} is satisfied between the Dirac mass eigenstates ÎœDi\nu_{Di} and the light Majorana neutrino mass eigenstates Îœi\nu_{i}, where UbimaximalU_{bimaximal} is the bimaximal mixing matrix. By these two ansatz, the Maki-Nakagawa-Sakata matrix is given by UMNS=VCKM†UbimaximalU_{MNS} = V_{CKM}^\dagger U_{bimaximal}. We find that in this model the novel relation Ξsol+Ξ13=π/4\theta_{sol} + \theta_{13} = \pi/4 is satisfied, where Ξsol\theta_{sol} and Ξ13\theta_{13} are solar and CHOOZ angle respectively. This "Solar-CHOOZ Complementarity" relation indicates that only if the CHOOZ angle Ξ13\theta_{13} is sizable, the solar angle Ξsol\theta_{sol} can deviate from the maximal mixing. We also infer the CP violation in neutrino oscillations. The leptonic Dirac CP phase ÎŽMNS\delta_{MNS} is predicted as sin⁥ΎMNS≃Aλ2η\sin \delta_{MNS} \simeq A \lambda^2 \eta, where A,λ,ηA, \lambda, \eta are the CKM parameters in Wolfenstein parametrization. Furthermore, we remark that the ratio of the Jarlskog CP violation factor for quarks and leptons is important, because the large uncertainty on η\eta is cancelled out in the ratio, RJ≡JCKM/JMNS≃42Aλ3≃5×10−2R_J \equiv J_{CKM}/J_{MNS} \simeq 4\sqrt{2} A \lambda^3 \simeq 5 \times 10^{-2}.Comment: 9 pages, no figures; v2 references added, v3 references adde

    Off-diagonal structure of neutrino mass matrix in see-saw mechanism and electron-muon-tau lepton universality

    Full text link
    By a simple extension of the standard model in which (e−Ό−τe-\mu -\tau ) universality is not conserved, we present a scenario within the framework of see-saw mechanism in which the neutrino mass matrix is strictly off-diagonal in the flavor basis. We show that a version of this scenario can accomodate the atmospheric ΜΌ−Μτ\nu_\mu -\nu_\tau neutrino oscillations and ΜΌ−Μe\nu_\mu -\nu_e oscillations claimed by the LSND collaboration. PACS: 14.60.Pq; 14.60.St;13.15.+gComment: 5 pages, Revtex, 1 figure: The model accomodate another version which explains atmospheric neutrino data and the observed solar neutrino oscillations (large angle solution). In the previous version the value of \lambda parameter is changed to the expected one. This version now accomodates LSND result and solar neutrino oscillations (small angle MSW solution

    Neutrino Mass and Grand Unification

    Full text link
    Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup SU(2)L×SU(2)R×SU(4)cSU(2)_L\times SU(2)_R\times SU(4)_c.Comment: 17 pages, 5 figures; Invited talk at the Nobel Symposium 129 on Neutrinos at Haga Slott, Sweden, August, 200

    Neutrino Mixing and Neutrino Telescopes

    Get PDF
    Measuring flux ratios of ultra-high energy neutrinos is an alternative method to determine the neutrino mixing angles and the CP phase delta. We conduct a systematic analysis of the neutrino mixing probabilities and of various flux ratios measurable at neutrino telescopes. The considered cases are neutrinos from pion, neutron and muon-damped sources. Explicit formulae in case of mu-tau symmetry and its special case tri-bimaximal mixing are obtained, and the leading corrections due to non-zero theta_{13} and non-maximal theta_{23} are given. The first order correction is universal as it appears in basically all ratios. We study in detail its dependence on theta_{13}, theta_{23} and the CP phase, finding that the dependence on theta_{23} is strongest. The flavor compositions for the considered neutrino sources are evaluated in terms of this correction. A measurement of a flux ratio is a clean measurement of the universal correction (and therefore of theta_{13}, theta_{23} and delta) if the zeroth order ratio does not depend on theta_{12}. This favors pion sources over the other cases, which in turn are good candidates to probe theta_{12}. The only situations in which the universal correction does not appear are certain ratios in case of a neutron and muon-damped source, which depend mainly on theta_{12} and receive only quadratic corrections from the other parameters. We further show that there are only two independent neutrino oscillation probabilities, give the allowed ranges of the considered flux ratios and of all probabilities, and show that none of the latter can be zero or one.Comment: 29 pages, 8 figures. Minor changes, to appear in JCA

    Lepton Flavor Violating Z Decays in the Zee Model

    Get PDF
    We calculate lepton flavor violating (LFV) Z decays Z \to {{e_i^\pm}}e_j^\mp (i, j = e, \mu, \tau ; i\neq j) in the Zee model keeping in view the radiative leptonic decays e_i\to e_j\gamma (i = \mu, \tau ; j = e, \mu ; i\neq j), \mu decay and anomalous muon magnetic moment (\mu AMM). We investigate three different cases of Zee f_{ij} coupling (A) f_{e\mu}^2 = f_{\mu\tau}^2= f_{\tau e}^2, (B) f_{e\mu}^2 \gg f_{\tau e}^2 \gg f_{\mu\tau}^2, and (C) f_{\mu\tau}^2 \gg f_{e\mu}^2 \gg f_{\tau e}^2 subject to the neutrino phenomenology. Interestingly, we find that, although the case (C) satisfies the large excess value of \mu AMM, however, it is unable to explain the solar neutrino experimental result, whereas the case (B) satisfies the bi-maximal neutrino mixing scenario, but confronts with the result of \mu AMM experiment. We also find that among all the three cases, only the case (C) gives rise to largest contribution to the ratio B(Z\to e^\pm\tau^\mp)/B(Z\to \mu^\pm \mu^\mp) \simeq {10}^{-8} which is still two order less than the accessible value to be probed by the future linear colliders, whereas for the other two cases, this ratio is too low to be observed even in the near future for all possible LFV Z decay modes.Comment: 12 pages, RevTex, 2 figures, 3 Tables, typos corrected, reference added, version to appear in Phys. Rev.

    Theta-13 as a Probe of Mu-Tau symmetry for Leptons

    Full text link
    Many experiments are being planned to measure the neutrino mixing parameter Ξ13\theta_{13} using reactor as well as accelerator neutrino beams. In this note, the theoretical significance of a high precision measurement of this parameter is discussed. It is emphasized that it will provide crucial information about different ways to understand the origin of large atmospheric neutrino mixing and move us closer towards determining the neutrino mass matrix. For instance if exact Ό↔τ\mu\leftrightarrow \tau symmetry in the neutrino mass matrix is assumed to be the reason for maximal ΜΌ−Μτ\nu_\mu-\nu_\tau mixing, one gets Ξ13=0\theta_{13}=0. Whether Ξ13≃Δm⊙2/ΔmA2\theta_{13}\simeq \sqrt{\Delta m^2_{\odot}/\Delta m^2_A} or Ξ13≃Δm⊙2/ΔmA2\theta_{13}\simeq \Delta m^2_{\odot}/\Delta m^2_A can provide information about the way the Ό↔τ\mu\leftrightarrow \tau symmetry breaking manifests in the case of normal hierarchy. We also discuss the same question for inverted hierarchy as well as possible gauge theories with this symmetry.Comment: 12 pages; no figures; latex; more exact expressions given for some parameters and minor typos corrected; paper accepted for publication in JHE

    Neutrino anomalies and large extra dimensions

    Get PDF
    Theories with large extra dimensions can generate small neutrino masses when the standard model neutrinos are coupled to singlet fermions propagating in higher dimensions. The couplings can also generate mass splittings and mixings among the flavour neutrinos in the brane. We systematically study the minimal scenario involving only one singlet bulk fermion coupling weakly to the flavour neutrinos. We explore the neutrino mass structures in the brane that can potentially account for the atmospheric, solar and LSND anomalies simultaneously in a natural way. We demonstrate that in the absence of a priori mixings among the SM neutrinos, it is not possible to reconcile all these anomalies. The presence of some structure in the mass matrix of the SM neutrinos can solve this problem. This is exemplified by the Zee model, which when embedded in extra dimensions in a minimal way can account for all the neutrino anomalies.Comment: 23 Revtex pages with 2 eps figure

    Mass Hierarchies and the Seesaw Neutrino Mixing

    Get PDF
    We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem.Comment: 11 pages, no figures, replaced with final version. Minor corrections and one typo corrected. Added one referenc

    Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP violation

    Full text link
    We discuss a minimal Supersymmetric SO(10) model where B-L symmetry is broken by a {\bf 126} dimensional Higgs multiplet which also contributes to fermion masses in conjunction with a {\bf 10} dimensional superfield. This minimal Higgs choice provides a partial unification of neutrino flavor structure with that of quarks and has been shown to predict all three neutrino mixing angles and the solar mass splitting in agreement with observations, provided one uses the type II seesaw formula for neutrino masses. In this paper we generalize this analysis to include arbitrary CP phases in couplings and vevs. We find that (i) the predictions for neutrino mixings are similar with Ue3≃0.18U_{e3}\simeq 0.18 as before and other parameters in a somewhat bigger range and (ii) that to first order in the quark mixing parameter λ\lambda (the Cabibbo angle), the leptonic mixing matrix is CP conserving. We also find that in the absence of any higher dimensional contributions to fermion masses, the CKM phase is different from that of the standard model implying that there must be new contributions to quark CP violation from the supersymmetry breaking sector. Inclusion of higher dimensional terms however allows the standard model CKM phase to be maintained.Comment: 22 pages, 6 figure
    • 

    corecore