5 research outputs found

    Effect of bio-seed priming and nano zinc oxide foliar application on quality and productivity of finger millet + greengram intercropping system

    Get PDF
    A critical stage of the plant's life cycle is germination and insufficient seedling emergence contributes to the lower productivity of finger millet. Priming improves seedling emergence, reduces stand establishment time, and improves seedling germination. There is a need to develop a new technology like Nanotechnology that can precisely detect and deliver the right amount of nutrients or other inputs to safe crops for the environment and maximising productivity. A field experiment was conducted during Kharif season to evaluate the response of effective farming practice for sole finger millet + greengram intercropping system under rainfed conditions to varied levels of bio-seed priming and foliar application of nanoparticles on crop growth and productivity. The results of the experiment revealed that finger millet (Eleusine coracana) intercropped with greengram (Vigna radiata) (2:1) had a significant level (<0.05) increase in growth and yield parameter of finger millet compared to sole finger millet. Application of Prosopis juliflora leaf extract 1 per cent alone + Foliar ZnO nanoparticle @ 500 ppm showed a significant level (<0.05) increase in growth and yield parameter like grain yield (3238.84 kg ha-1), finger millet equivalent yield (FMEY) (3483.84 kg ha-1) and straw yield (7393.83 kg ha-1) compared to Pogamia pinnata leaf extract 1% alone + Foliar ZnO nanoparticle @ 500 ppm. The present study mainly focussed on cropping system, bio seed priming, and foliar application of nano zinc oxide utilized during rainfed conditions to increase uniform germination, drought resistance and improve crop yield along with nutrient content in seeds

    Instant flood risk modelling (Inform) tool for co-design of flood risk management strategies with stakeholders in Can Tho city, Vietnam

    No full text
    Flood risk reduction strategies play an important role in flood risk management (FRM) and these strategies are being co-designed with the engagement of the stakeholder through multiple consultations and co-designing sessions. Effective participation of stakeholders in interactive work sessions requires fast and accurate modeling systems with a user-friendly interface, which can simulate the impact due to various flood reduction measures selected by the stakeholders and also generate outputs that can be understood by all stakeholders, especially those who are not FRM specialists. Presenting an easy-to-understand tool with easy inputs and outputs for a variety of stakeholders and at the same time providing reliable and accurate results for a range of scenarios and interventions is a challenge. Seven requirements that are essential for a user-friendly flood risk tool were used to develop an instant flood risk modeling tool. This paper presents a web-based hydraulic tool, i.e., instant flood risk model (Inform), to support FRM in the urban center of Can Tho city (Ninh Kieu district), Mekong Delta, Vietnam. Inform was developed based on (i) a simplified 1D model for the entire Mekong Delta; and (ii) flood hazard and damage maps, and estimated flood damage for Ninh Kieu district in Can Tho city obtained directly from the 1D/2D coupled model for Ninh Kieu district. Inform rapidly generates flood levels, flood hazard and damage maps, estimated damages. Pilot testing with experts confirmed that Inform qualifies as a reliable co-design tool for developing FRM strategies as it features an inbuilt input library, comprises flexible options, easy to use, produces quick results and has a user-friendly interface. With the help of an interactive web-based tool such as Inform presented here, it is possible to co-design FRM strategies for Can Tho or any other city that is subject to flood risk.Hydraulic Structures and Flood RiskUrban Desig

    An Efficient Modeling Approach for Probabilistic Assessments of Present-Day and Future Fluvial Flooding

    Get PDF
    Risk-informed flood risk management requires a comprehensive and quantitative risk assessment, which often demands multiple (thousands of) river and flood model simulations. Performing such a large number of model simulations is a challenge, especially for large, complex river systems (e.g., Mekong) due to the associated computational and resource demands. This article presents an efficient probabilistic modeling approach that combines a simplified 1D hydrodynamic model for the entire Mekong Delta with a detailed 1D/2D coupled model and demonstrates its application at Can Tho city in the Mekong Delta. Probabilistic flood-hazard maps, ranging from 0.5 to 100 year return period events, are obtained for the urban center of Can Tho city under different future scenarios taking into account the impact of climate change forcing (river flow, sea-level rise, storm surge) and land subsidence. Results obtained under present conditions show that more than 12% of the study area is inundated by the present-day 100 year return period of water level. Future projections show that, if the present rate of land subsidence continues, by 2050 (under both RCP 4.5 and RCP 8.5 climate scenarios), the 0.5 and 100 year return period flood extents will increase by around 15- and 8-fold, respectively, relative to the present-day flood extent. However, without land subsidence, the projected increases in the 0.5 and 100 year return period flood extents by 2050 (under RCP 4.5 and RCP 8.5) are limited to between a doubling to tripling of the present-day flood extent. Therefore, adaptation measures that can reduce the rate of land subsidence (e.g., limiting groundwater extraction), would substantially mitigate future flood hazards in the study area. A combination of restricted groundwater extraction and the construction of a new and more efficient urban drainage network would facilitate even further reductions in the flood hazard. The projected 15-fold increase in flood extent projected by 2050 for the twice per year (0.5 year return period) flood event implies that the “do nothing” management approach is not a feasible option for Can Tho.Hydraulic Structures and Flood Ris
    corecore