52 research outputs found

    Monoclonal antibodies in fish and shellfish health management in India

    Get PDF
    The paper describes the superiority of monoclonal antibodies (MAb) over conventional polyclonal antisera. Studies undertaken indicate that Aeromonas hydrophila isolates are highly heterogenous and variation exists even between isolates from a farm, requiring a large number of MAbs for classification and use of information in vaccine development. However, some of the MAbs could be used for detection of homologous isolates in fish kidney by immunodot assay and evaluation and standardization of biofilm of A. hydrophila for oral vaccination in carps

    Filtration in some tropical intertidal bivalves exposed to mercury and cadmium mixtures

    Get PDF
    Three species of intertidal filter feeding bivalves (Modiolus carvalhoi, Modiolus sp. and Donax spiculum) exposed to mercury and cadmium filtered significantly less volume of water under individual metal and metal mixture stress. Mercury and cadmium in mixtures interacted additively and more than additively (Synergism) in depressing the filtration rate of the bivalves

    Acute toxicity of cadmium to six intertidal invertebrates

    Get PDF
    Following a static bioassay techniques the acute toxicity of cadmium to six species of intertidal invertebrates was determined. The sensitivity of the animals to cadmium was of the following order: Emerita sp. (burrowing crustacean) Donax spiculum (burrowing bivalve) Perna viridis (sedentary bivalve) Sabellaria clandestinus (tube-dwelling polychaete) Modiolus carvalhoi and Modiolus sp. (sedentary bivalves). The above observation was based on the median lethal concentrations recorded for the different species, Emerita sp. 1.35 p.p.m., Donax spiculum 1.8 p.p.m., Perna viridis 2.5 p.p.m., Sabellaria clandestinus 2.8 p.p.m., Modiolus carvalhoi 5.6 p.p.m. and Modiolus sp. 9.6 p.p.m. The findings throw insight into the toxicity of cadmium to the common intertidal animals which are either suspension or detritus feeders

    Humoral and protective response of Indian major carps to immersion vaccination with Aeromonas hydrophila

    Get PDF
    Fry of the Indian major carps, Catta catla (Ham.), Labeo rohita (Ham.) and Cirrhinus mrigala (Ham.) were immunized at 4 and 8 weeks post hatching (wph) by direct immersion in a suspension (10 super(8) cells ml super(-1))of heat inactivated Aeromonas hydrophila. Following the same procedure, booster dose was administered 20 days after the first immersion. Antibodies as well as protective response produced in both the groups after the first and the booster immersion were different and significant (P<0.05). No significant difference was found between the species in the two age groups. The specimens immunized 8 wph showed higher antibody titres and protection than the 4 wph group. C. catla had higher relative percent survival followed by L. rohita and C. mrigala

    Promotion of substrate based microbial biofilm in ponds: a low cost technology to boost fish production

    Get PDF
    Microbial biofilms have been found to increase fish production in ponds by increasing heterotrophic production through periphyton proliferation on available substrates. In this paper, the role of substrate based microbial biofilm in the production of Cyprinus carpio and Labeo rohita grown in ponds is investigated, using an easily available and biodegradable agricultural waste product (sugarcane bagasse) as substrate

    Is epizootic ulcerative syndrome (EUS) specific fungus of fishes a primary pathogen?: an opinion

    Get PDF
    Earlier findings on epizootic ulcerative syndrome (EUS) and the present observation of the authors on transmission of EUS to snakehead (Channa sp.) without skin damage provide evidence to suggest that the invasive fungus associated with EUS is a primary pathogen

    Exploring Indonesian aquaculture futures

    Get PDF
    Aquaculture is the fastest-growing food production sector globally, with production projected to double within the next 15–20 years. Future growth of aquaculture is essential to providing sustainable supplies of fish in national, regional and global fish food systems; creating jobs; and maintaining fish at affordable levels for resource-poor consumers. To ensure that the anticipated growth of aquaculture remains both economically and ecologically sustainable, we need to better understand the likely patterns of growth, as well as the opportunities and challenges, that these trends present. This knowledge will enable us to better prioritize investments that will help ensure the sustainable development of the sector. In Indonesia, WorldFish and partners have applied a unique methodology to evaluate growth trajectories for aquaculture under various scenarios, as well as the opportunities and challenges these represent. Indonesia is currently the fourth largest aquaculture producer globally, and the sector needs to grow to meet future fish demand. The study overlapped economic and environmental models with quantitative and participatory approaches to understand the future of aquaculture in Indonesia. Such analyses, while not definitive, have provided new understanding of the future supply and demand for seafood in Indonesia stretching to 2030. The learning from this research provides a foundation for future interventions in Indonesian fish food systems, as well as a suite of methodologies that can be applied more widely for insightful analyses of aquaculture growth trajectories in other countries or regions

    Improving biosecurity: A necessity for aquaculture sustainability

    Get PDF
    The implementation of biosecurity measures is vital to the future development of aquaculture, if the culture of aquatic species is to make it possible to feed the global human population by 2030. Biosecurity includes control of the spread of aquatic plant and animal diseases and invasive pests, and the production of products that are safe to eat. For controls on diseases and invasive pests, it is necessary to implement programmes that involve all regional countries. Lessons from measures implemented in Asia need to be expanded/upscaled in Latin America, Africa and other emerging aquaculture regions. Such development will make countries more self sufficient and will feed local populations. Globally, there is good evidence that aquatic animal diseases and invasive animal and plant pests are being spread by hull fouling and ballast water in shipping, and serious aquatic animal diseases by the international trade in ornamental fish. While there has been a growing awareness of the danger of ballast water transfer, hull fouling remains a serious problem. It is widely recognized that ornamental fish present a disease risk, but individual countries have tried to address this alone, and there has not been an international effort to control the trade. Developments in genetics and molecular biology hold great potential for disease control, either by breeding for disease resistance, or by the use of rapid, specific, culture site testing. Currently, there is no evidence that the use of antibiotics in aquaculture poses a threat to human health or that antibiotic-resistant strains have developed; however, the future use of genetically modified aquatic organisms (GMOs) may negate the need for chemotherapy. Cultured aquatic organisms, selected for disease resistance or rapid growth, are likely to become more acceptable, and probably necessary, to feed the rapidly growing global population. Most global aquaculture occurs in developing Asian countries, in which aquaculture products can harbor zoonotic parasites, and there is a need to treat such products to negate the threat of parasitic zoonoses and permit international export. Climate change is likely to be a major influence on aquaculture in the future, with impacts on coastal aquaculture through increased sea levels affecting coastlines, and acidification. To feed the growing global population, it will be necessary to culture new species, for which research on diseases and invasiveness will be necessary to acquire the information necessary to implement biosecurity measures

    A review of inclusive business models and their application in aquaculture development

    Get PDF
    Open Access Journal; Published online: 30 Jan 2020For aquaculture to continue along its current growth trajectory and contribute towards achieving the Sustainable Development Goals, value chains must become more inclusive. Smallholders and other local value chain actors are often constrained by circumstances and market failures in the global aquaculture industry. Integrating these actors into aquaculture value chains through inclusive business models (IBMs) is often touted as a solution to sustainable and ethical trade and business that can generate development outcomes. We reviewed 36 papers under seven business models commonly used in agriculture development to assess their application in aquaculture value chains in lower‐income countries. A global value chain (GVC) analysis is used to unpack the economic and social upgrading objectives of the different IBMs, as well as the types of relational coordination used between actors in the chain to achieve development outcomes. The extent to which these IBMs helped poor actors overcome certain barriers is evaluated with a focus on how they may ensure or be a risk to inclusiveness through the relations and upgrading opportunities evident in their make‐up. The analysis found that the majority of the models focused on economic upgrading over social upgrading. Providing opportunities for the latter is key to achieving the inclusive objectives of IBMs. Greater horizontal coordination between actors can create further opportunities for economic upgrading established under vertical coordination with other nodes upstream and downstream in a value chain. There is a need to further contextualize these models to aquaculture systems and develop clear indicators of inclusiveness
    corecore