4 research outputs found

    Thermal based remediation technologies for soil and groundwater: a review

    Get PDF
    Thermal remediation technologies are fast and effective tools for the remediation of contaminated soils and sediments. Nevertheless, the high energy consumption and the effect of high temperature on the soil properties may hinder the wide applications of thermal remediation methods. This review highlights the recent studies focused on thermal remediation. Eight types of thermal remediation processes are discussed, including incineration, thermal desorption, stream enhanced extraction, electrical resistance heating, microwave heating, smoldering, vitrification, and pyrol-ysis. In addition, the combination of thermal remediation with other remediation technologies is presented. Finally, thermal remediation sustainability is evaluated in terms of energy efficiency and their impact on soil properties. The developments of the past decade show that thermal-based technologies are quite effective in terms of contaminant removal but that these technologies are associated with high energy use and costs and can has an adverse impact on soil properties. Nonetheless, it is anticipated that continued research on thermally based technologies can increase their sustainability and expand their applications. Low temperature thermal desorption is a prom-ising remediation technology in terms of land use and energy cost as it has no adverse effect on soil function after treatment and low temperature is required. Overall, selecting the sustainable remediation technology depends on the contaminant properties, soil properties and predicted risk level. © 2022 Desalination Publications. All rights reserved

    Microplastic in the environment: identification, occurrencand mitigation measures

    Get PDF
    Microplastic is an emerging pollutant causing trouble worldwide due to its extensive distribution and potential hazards to the ecological system. Some fundamental questions about micro-plastics, such as their presence, source, and possible hazards, remain unanswered. These issues develop because of a lack of systematic and comprehensive microplastic analysis. As a result, we thoroughly evaluated current knowledge on microplastics, including detection, characterization, occurrence, source, and potential harm. Microplastics are found in seawater, soil, wetlands, and air matrices worldwide based on findings. Visual classification, which can be enhanced by com-bining it with additional tools, is one of the most used methods for identifying microplastics. As soon as is practicable, microplastics analytical methods ought to be standardized. New techniques for analyzing nano-plastics are urgently needed in the meantime. Numerous studies have shown that microplastics’ impacts on people and soil are significantly influenced by their size, shape, and surface physicochemical characteristics. Finally, this study suggests areas for future research based on the knowledge gaps in the area of microplastics. © 2022 Desalination Publications. All rights reserved

    Application of Natural Coagulants for Pharmaceutical Removal from Water and Wastewater: A Review

    Get PDF
    Pharmaceutical contamination threatens both humans and the environment, and several technologies have been adapted for the removal of pharmaceuticals. The coagulation-flocculation process demonstrates a feasible solution for pharmaceutical removal. However, the chemical coagulation process has its drawbacks, such as excessive and toxic sludge production and high production cost. To overcome these shortcomings, the feasibility of natural-based coagulants, due to their biodegradability, safety, and availability, has been investigated by several researchers. This review presented the recent advances of using natural coagulants for pharmaceutical compound removal from aqueous solutions. The main mechanisms of natural coagulants for pharmaceutical removal from water and wastewater are charge neutralization and polymer bridges. Natural coagulants extracted from plants are more commonly investigated than those extracted from animals due to their affordability. Natural coagulants are competitive in terms of their performance and environmental sustainability. Developing a reliable extraction method is required, and therefore further investigation is essential to obtain a complete insight regarding the performance and the effect of environmental factors during pharmaceutical removal by natural coagulants. Finally, the indirect application of natural coagulants is an essential step for implementing green water and wastewater treatment technologies

    Chemical items used for preparing tissue-mimicking material of wall-less flow phantom for doppler ultrasound imaging

    No full text
    The wall-less flow phantoms with recognized acoustic features (attenuation and speed of sound), interior properties, and dimensions of tissue were prepared, calibrated, and characterized of Doppler ultrasound scanning demands tissue-mimicking materials (TMMs). TMM phantoms are commercially available and ready-made for medical ultrasound applications. Furthermore, the commercial TMM phantoms are proper for ultrasound purpose or estimation of diagnostic imaging techniques according to the chemical materials used for its preparation. However, preparing a desirable TMM for wall-less flow phantom using a specific chemical material according to the specific applications is required for different flow. In this review, TMM and wall-less flow phantoms prepared using different chemical materials and methods were described. The chemical materials used in Doppler ultrasound TMM and wall-less flow phantoms fabricated over the previous decades were of high interest in this review
    corecore