9 research outputs found

    Simulation of LTE-TDD in the HAPS channel

    Get PDF
    LTE stands for Long Term Evolution. This technology enhances the data rate and capacity using a new radio interface and an optimized core network. This progress was done to satisfy standards defined for the fourth generation of cellular communications in ITU. LTE has two types of transmission: Frequency Division Duplex (FDD) and Time Division Duplex (TDD). Nowadays, LTE-TDD rapidly Grows and takes place of old fixed cellular communications, like WiMAX. Another upcoming technology in the communication industry is High Amplitude Platform Stations (HAPS). Studying the capability of HAPS as a base station for LTE-TDD is the main purpose of this paper. Simulations have done using HAPS channel and compared to Stanford University Interim (SUI) standard channels for different scenarios. Results were compared to achieve a conclusion on HAPS implementation for LTE-TDD based on BER and data throughput

    Chirplet signal design by FPGA

    Get PDF
    The ever-expanding growth of the electronics and communications industries present new challenges for researchers. One of these challenges is the generation of the required bandwidth signal over a specific time frame that is used in a variety of contexts, particularly radar systems. To improve the range resolution in the radar along with better SNR, it is necessary to reduce the signal bandwidth and increase the peak power. There are some restrictions for narrowband signals like power limitation, pulse shaping, and the production of unwanted harmonics. So as a solution pulse compression techniques are suggested. Pulse compression is a process that modulating the transmitted pulse to achieve a wideband signal and then at the receiver, the received signal correlates with the transmitted pulse to achieve narrowband representations of data. Chirp is the most common signal used in pulse compression. The chirp signal is produced using linear frequency modulation. In this study, we attempted to add an amplitude modulation to the chirp signal and evaluate its performance by implementation on FPGA. The outcome signal is called chirplet and simulation will show that it enhance target detection and image quality in imaging radars like SAR

    Speech emotion recognition based on SVM and KNN classifications fusion

    Get PDF
    Recognizing the sense of speech is one of the most active research topics in speech processing and in human-computer interaction programs. Despite a wide range of studies in this scope, there is still a long gap among the natural feelings of humans and the perception of the computer. In general, a sensory recognition system from speech can be divided into three main sections: attribute extraction, feature selection, and classification. In this paper, features of fundamental frequency (FEZ) (F0), energy (E), zero-crossing rate (ZCR), fourier parameter (FP), and various combinations of them are extracted from the data vector, Then, the principal component analysis (PCA) algorithm is used to reduce the number of features. To evaluate the system performance. The fusion of each emotional state will be performed later using support vector machine (SVM), K-nearest neighbor (KNN), In terms of comparison, similar experiments have been performed on the emotional speech of the German language, English language, and significant results were obtained by these comparisons

    Effect of Heterogeneity on Capillary Pressure and Relative Permeability Curves in Carbonate Reservoirs. A Case Study for Mishrif Formation in West Qurna/1 Oilfield, Iraq

    Get PDF
    The special core analysis tests were accomplished on a set of core plugs for Mishrif Formation (mA, mB1, and mB2cde/mC units) in West Qurna/1 oilfield, southern Iraq. Oil relative permeability (Kro) data and the Corey-type fit of the data as functions of the brine saturation at the core outlet face for individual samples in the water-oil imbibition process to estimate relative permeability measurements by the centrifuge method were utilized. Identical correlations for oil and water relative permeabilities were extracted by steady-state and unsteady-state methods. For the mA samples, the gas-water capillary pressure curves were within a narrow range (almost identical) indicating that mA is a homogeneous unit. Kro curves for three mB2ab plugs were practically identical, that is referring to the homogeneity in the upper portion of the unit. The mB2 unit has a more solid‐phase concentration than other units. In addition, the general trend of low residual oil saturation is related to the raising in porosity but no reliable correlation between the residual oil saturation to water drive (Sorw) and Klinkenberg-corrected permeability (Kinf). Based on the correlation between the effective oil permeability at the initial water saturation [ko(Swi)] and (Kinf/f)1/2 for the high-permeability lithofacies mB1 plugs, ko(Swi) is approximately equal to or exceeds Kinf. While ko(Swi) was below Kinf for the other samples. New good empirical equations were obtained for effective gas permeability at final water saturation versus Kinf, as well as, for Kro and Krw versus saturation for all lithofacies

    Effect of Heterogeneity on Recovery Factor for Carbonate Reservoirs. A Case Study for Mishrif Formation in West Qurna Oilfield, Southern Iraq

    Get PDF
    Oil recovery could be impacted by the relation between vertical permeability (Kv) and horizontal permeability (Kh) (Kv/Kh). 4816 plugs that have been getting hold of 18 wells of Mishrif formation in the West Qurna oilfield were used. Kv/Kh data provided some scatter, but the mean is ~1. Kv/Kh =1 was used for the Petrel model before upscaling according to the heterogeneity of each layer. Kv/Kh values for Mishrif Formation in West Qurna Oilfield are 0.8 for relatively homogeneous, 0.4 for heterogeneous rock, and 0.1 for cap rocks (CRII).    Eclipse TM was used for reservoir simulation. PVT and SCAL data enhanced the simulation process.  The results showed that the reduction of Kv/Kh to 0.9 for the mA unit would reduce the recovery factor (RF) by ~0.9% and continuing lowering would reduce RF more, while the same reduction would reduce RF by ~1% in the mB1 unit. The reduction would be 0.8, which increases RF by ~0.5% for the mB2U unit, while there was no effect on RF in the CRII unit whatever the reductions

    Discovering the spatial locations of the radio frequency radiations effects around mobile towers

    Get PDF
    Nowadays, smart devices have become a major part of human life, and this need has led to an increase in the demand for these devices, prompting major telecommunications companies to compete with each other to acquire the bulk of this market. This competition led to a significant increase in the number of mobile towers, to expand the coverage area. Each communication tower has transmitters and receivers to connect subscribers within the mobile network and other networks. The receivers and transmitters of each mobile tower operate on radio frequency waves. These waves can cause harm to humans if the body tissues absorb the radiation resulting from these waves. Headache, discomfort, and some other diseases are among the effects resulting from the spatial proximity to the mobile towers. In this paper, a model based on geographic information systems (GIS) software is proposed for the purpose of discovering the area of exposure to radio frequency radiation. This model can assists mitigate the opportunities of exposure to these radiations, thus reducing its danger. Real data of the levels of electromagnetic pollution resulting from mobile towers were analyzed during this study and compared with international safety standards

    Information and Communication Technology and its Impact on Improving the Quality of Engineering Education Systems

    Get PDF
    The emergence of the remarkable phenomenon of information and communication technology (ICT) in the last two decades of the twentieth century, and its integration into the formal education systems of leading countries, has expanded learning opportunities and facilitated easy access to educational resources. Due to the vast amount of information available, there is a growing emphasis on information management. This approach allows students to enhance their learning by utilizing various tools and visual aids. These tools help in teaching and training by engaging students’ different senses, making learning more realistic, practical, and enjoyable. The quality of education and the effectiveness of educational systems are among the most important concerns for educational developers, and decision-makers in any country. The areas of education is one of the fields that has undergone fundamental changes with the emergence of information technology. Information technology has been recognized as an effective tool in the learning and teaching process. In this research, we will discuss the role of ICT and its impact on enhancing the quality of education systems. The results demonstrate that ICT plays an effective role in the design, planning, implementation, learning, educational evaluation, and structure of education. This includes aspects such as timing, suitability, accuracy, adequacy, realism, speed of transmission, learning accuracy cost reduction, and educational effectiveness. Based on the aforementioned points, educational institutions must offer a suitable framework for integrating ICT into education through thorough planning

    E-learning in the Cloud Computing Environment: Features, Architecture, Challenges and Solutions

    Get PDF
    The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services on the Internet. It is predicted to be the next generation of information technology architecture and offers great potential to enhance productivity and reduce costs. Cloud service providers offer their processing and memory resources to users. By paying for the use of these resources, users can access them for their calculations and processing anytime and anywhere. Cloud computing provides the ability to increase productivity, save information technology resources, and enhance computing power, converting processing power into a tool with constant access capabilities. The use of cloud computing in a system that supports remote education has its own set of characteristics and requires a unique strategy. Students can access a wide variety of instructional engineering materials at any time and from any location, thanks to cloud computing. Additionally, they can share their materials with other community members. The use of cloud computing in e-learning offers several advantages, such as unlimited computing resources, high scalability, and reduced costs associated with e-learning. An improvement in the quality of teaching and learning is achieved through the use of flexible cloud computing, which offers a variety of resources for educators and students. In light of this, the current research presents cloud computing technology as a suitable and superior option for e-learning systems

    Enhancement of the Fifth Generation of Wireless Communication by Using a Search Optimization Algorithm

    No full text
    The fifth generation of cellular networks (5G) is seeing a rapid expansion, and energy efficiency (EE) is a hot topic of discussion. It has been found that both EE and maximum spectral efficiency (SE) are desired. They are conflicting objectives, meaning that maximizing one will decrease the other. To tackle this issue, strategies for spectrum and energy optimization have been proposed, as well as green communication plans that aim to minimize the tradeoff between SE and EE. Research has been conducted on EE-oriented resource allocations to reduce energy usage while ensuring high-quality results. To do this, the Crow Search Optimization Algorithm (CSA) has been used. Simulation results have demonstrated that this proposed method is effective in finding the most suitable solution
    corecore