7 research outputs found

    A Numerical Confirmation of a Fractional SEITR for Influenza Model Efficiency

    Get PDF
    The main idea of this study is to reduce the number of susceptible to infections so that ill patients can receive prompt hospitalization. Fractional SEITR was introduced for this purpose. Both endemic and disease-free equilibrium’s’ durability was examined. The fundamental reproduction number of the fractional SEITR model was determined using the next-generation matrix method. Our analytical results were supported by numerical models. Here, a graphical representation of the fractional order model is presented to validate the conclusion through numerical simulation. We have come to the conclusion that the fractional order model is more precise and provides more information about the true data of disease dynamics

    Modeling and Analysis of a Fractional Visceral Leishmaniosis with Caputo and Caputo–Fabrizio derivatives

    Get PDF
    Visceral leishmaniosis is one recent example of a global illness that demands our best efforts at understanding. Thus, mathematical modeling may be utilized to learn more about and make better epidemic forecasts. By taking into account the Caputo and Caputo-Fabrizio derivatives, a frictional model of visceral leishmaniosis was mathematically examined based on real data from Gedaref State, Sudan. The stability analysis for Caputo and Caputo-Fabrizio derivatives is analyzed. The suggested ordinary and fractional differential mathematical models are then simulated numerically. Using the Adams-Bashforth method, numerical simulations are conducted. The results demonstrate that the Caputo-Fabrizio derivative yields more precise solutions for fractional differential equations

    A Symmetry Chaotic Model with Fractional Derivative Order via Two Different Methods

    No full text
    In this article, we have investigated solutions to a symmetry chaotic system with fractional derivative order using two different methods—the numerical scheme for the ABC fractional derivative, and the Laplace decomposition method, with help from the MATLAB and Mathematica platforms. We have explored progressive and efficient solutions to the chaotic model through the successful implementation of two mathematical methods. For the phase portrait of the model, the profiles of chaos are plotted by assigning values to the attached parameters. Hence, the offered techniques are relevant for advanced studies on other models. We believe that the unique techniques that have been proposed in this study will be applied in the future to build and simulate a wide range of fractional models, which can be used to address more challenging physics and engineering problems

    Analysis, modeling and simulation of a fractional-order influenza model

    No full text
    The primary goal of this study is to provide a novel mathematical model for Influenza using the Atangana–Baleanu Caputo fractional-order derivative operator (ABC-Operator) in place of the standard operator. There will be an examination of how the influenza-positive solutions reacts to real-world data. The fractional Euler Method will be utilized to reveal the dynamics of the influenza mathematical model. Both the stability of the disease-free equilibrium and the endemic equilibrium points, two symmetrical extrema of the proposed dynamical model, are examined. It will be shown, using numerical comparisons, that the findings obtained by employing the fractional-order model are considerably more similar to certain actual data than the integer-order model's results. These should shed light on the significance of fractional calculus when confronting epidemic risks

    A Comparative Numerical Study of the Symmetry Chaotic Jerk System with a Hyperbolic Sine Function via Two Different Methods

    No full text
    This study aims to find a solution to the symmetry chaotic jerk system by using a new ABC-FD scheme and the NILM method. The findings of the supplied methods have been compared to Runge–Kutta’s fourth order (RK4). It was discovered that the suggested techniques gave results comparable to the RK4 method. Our primary goal is to develop effective methods for addressing symmetrical, chaotic systems. Using ABC-FD and NILM presents innovative approaches for comprehending and effectively handling intricate dynamics. The findings of this study have significant significance for addressing the occurrence of chaotic behavior in diverse scientific and engineering contexts. This research significantly contributes to fractional calculus and its various applications. The application of ABC-FD, which can identify chaotic behavior, makes our work stand out. This novel approach contributes to advancing research in nonlinear dynamics and fractional calculus. The present study not only offers a resolution to the problem of symmetric chaotic jerk systems but also presents a framework that may be applied to tackle analogous challenges in several domains. The techniques outlined in this paper facilitate the development and computational analysis of prospective fractional models, thereby contributing to the progress of scientific and engineering disciplines

    Mathematical modeling and stability analysis of the novel fractional model in the Caputo derivative operator: A case study

    No full text
    The fundamental goal of this research is to suggest a novel mathematical operator for modeling visceral leishmaniasis, specifically the Caputo fractional-order derivative. By utilizing the Fractional Euler Method, we were able to simulate the dynamics of the fractional visceral leishmaniasis model, evaluate the stability of the equilibrium point, and devise a treatment strategy for the disease. The endemic and disease-free equilibrium points are studied as symmetrical components of the proposed dynamical model, together with their stabilities. It was shown that the fractional calculus model was more accurate in representing the situation under investigation than the classical framework at α = 0.99 and α = 0.98. We provide justification for the usage of fractional models in mathematical modeling by comparing results to real-world data and finding that the new fractional formalism more accurately mimics reality than did the classical framework. Additional research in the future into the fractional model and the impact of vaccinations and medications is necessary to discover the most effective methods of disease control
    corecore