59 research outputs found

    Synthesis and Characterization of Polymeric Material Consisting on Acrylamide Catalyzed by Maghnite (Algerian MMT) under Microwave Irradiation

    Get PDF
    Intercalation of acrylamide into interlayer spaces of natural montmorillonite called maghnite (Algerian MMT) by the free solvent polymerization technique under microwave irradiation was studied. The transformation was carried out with using both the raw (maghnite-Na fin) and treated clay (maghnite-Na+ fin) in aqueous sodium hydroxide NaOH solution (1 M). It was shown that no initial modification of the layered mineral (by ion-exchange with Na+ cations or organophilization) is needed for the successful introduction of anionic hydrogels into the interlayer gallery. The goal of the present study was to synthesis anionic polyacrylamide/maghnite composite with similar composition and structure to that synthesized of other catalyst. Maghnite catalyst has a significant role in the industrial scale. In fact, the use of maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. The anionic sodium-clay polyacrylamide material exhibited a tendency to the formation of exfoliated structure. The synthesized hydrogels, as monitored by the swelling behavior were characterized by Fourier transform infrared and 1HNMR analysis

    New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+) as a Green Solid Catalyst

    Get PDF
    Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP) with allylamine in order to give hexa(allylamino)cyclotriphosphazene (HACTP)  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H+. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H+ is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H+ to 5% by weight is confirmed by 1H-NMR, 13C-NMR, 31P-NMR (Nuclear magnetic resonance) and FTIR (Fourier Transform Infrared spectroscopy). MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry) is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery) and TGA (Thermogravimetric Analysis) show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C.

    Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT) Under Microwave Irradiation

    Get PDF
    In this study, a novel green cationic hydrogel of cationic polyacrylamide composite have been prepared and investigated. The synthesis of green cationic polyacrylamide composite was evaluated for its solubility in water. The reactions were performed using acrylamide monomer, solvent, catalyst (clay fin called maghnite) and solution of  H2SO4 (0.25 M), with the system under microwave irradiation (160 ºC) for 4 min. Major factors affecting the polymerization reaction were studied with a view to discover appropriate conditions for preparation of the composite. The cationic polyacrylamide obtained is the subject of future studies of modification and transformation. The resulting polymer has been characterized by a variety of characterization techniques, such as: Fourier Transform Infrared Spectra and 1H NMR spectra. 

    Green Polymerization of Hexadecamethylcyclooctasiloxane Using an Algerian Proton Exchanged Clay Called Maghnite-H+

    Get PDF
    The purpose of this study was to synthesize polydimethylsiloxanes by heterogeneous catalysis, based on the polymerization of the hexadecamethylcyclooctasiloxane (D8) by an environment-friendly solid catalyst (Maghnite-H+). Maghnite-H+ is a natural Algerian clay of the montmorillonite type, prepared by activation with sulfuric acid, the impact of this activation was observable in the XRD spectrum, by the increase in the interlayer spacing (d001) resulting from the intercalation of hydronium ions between layers. The molecular structure of the obtained polymer was determined by different chemical methods of analysis such as IR, 1H NMR, and 13C NMR. The thermal behavior of the polysiloxane obtained was confirmed by DSC. In order to achieve the best possible yield and at the same time to get a polymer of high molecular mass, the operating conditions have been set at t = 8 h and T = 70 °C after the reaction was repeated several times. The average molecular mass and the polydispersity index were measured by GPC. A reaction mechanism has been suggested to show the action of the Maghnite-H+ during the reaction.

    Catalytic Activity of Maghnite-H+ in the Synthesis of Polyphenylmethylsiloxane under Mild and Solvent-free Conditions

    Get PDF
    In this study, a new and easy strategy was discussed for the purpose of synthesizing of a polymer of phenylmethylcyclosiloxane type (PPMS). The cationic ring opening polymerization of triphenyltrimethylcyclotrisiloxane (D3Ph,Me) was initiated by a solid, efficient and environmentally-friendly catalyst called Maghnite-H+. Maghnite-H+ is a natural clay composed essentially of montmorillonite, it is activated with an acid treatment by replacing the interlayer ions by protons, that results to the increase of the basal space, this may be confirmed by XRD analysis. The reaction was carried out without solvent at different temperatures and for different periods of time, using also several catalyst contents. Subsequently, the operating conditions were opted in order to obtain a maximum yield of the linear polymer and a high average molecular mass as well. The structure of polymers obtained was confirmed by IR analysis. 1H NMR and 13C NMR analyzes were used to follow the crosslinking of polymer chains over time. The thermal behavior was investigated by DSC analysis. The average molecular mass and the polydispersity indices were determined by GPC
    • …
    corecore