10 research outputs found

    The impact of L-selectin/CD62L on the co-stimulation and migration of CD8+ T cells during virus infection

    Get PDF
    The strategy of the adaptive immune system in eliminating viruses from infected tissues is the activation of CD8+ T cells with specific T cell receptor in the LN draining the site of virus entry and subsequent migration of these cells to the sites of the viral infection. L-selectin, a well characterized LN homing receptor, is variably expressed on virus peptide activated CD8+ T cells, regulated through two separate mechanisms of early ectodomain shedding and late gene silencing. The role of L-selectin in homing of activated CD8+ T cells to sites of virus infection is not studies in detail. Here we show that despite being primed normally in the draining LN, there were a hierarchy in homing ability of adoptively transferred CD8+ T cells expressing mutant L-selectin(which resist shedding and gene silencing upon T cell activation), wildtype Lselectin and deficient in L-selectin (Ko) to the site of virus infection. The Lselectin specific recruitment was confirmed by using antibody blockade strategy and short-term competitive homing experiments. Furthermore, Lselectin dependent homing of virus specific CD8+ T cells rather than hyperfunctional or hyperproliferative T cells conferred anti-viral immunity against two evolutionarily distinct viruses, vaccinia and influenza viruses which infect mucosal and visceral organs, respectively

    Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells

    Get PDF
    The success of adoptive T-cell therapies for the treatment of cancer patients depends on transferred T-lymphocytes finding and infiltrating cancerous tissues. For intravenously transferred T-cells, this means leaving the bloodstream (extravasation) from tumour blood vessels. In inflamed tissues, a key event in extravasation is the capture, rolling and arrest of T-cells inside blood vessels which precedes transmigration across the vessel wall and entry into tissues. This depends on co-ordinated signalling of selectins, integrins and chemokine receptors on T-cells by their respective ligands which are up-regulated on inflamed blood vessels. Clinical data and experimental studies in mice suggest that tumour blood vessels are anergic to inflammatory stimuli and the recruitment of cytotoxic CD8(+) T-lymphocytes is not very efficient. Interestingly, and somewhat counter-intuitively, anti-angiogenic therapy can promote CD8(+) T-cell infiltration of tumours and increase the efficacy of adoptive CD8(+) T-cell therapy. Rather than inhibit tumour angiogenesis, anti-angiogenic therapy ‘normalizes’ (matures) tumour blood vessels by promoting pericyte recruitment, increasing tumour blood vessel perfusion and sensitizing tumour blood vessels to inflammatory stimuli. A number of different approaches are currently being explored to increase recruitment by manipulating the expression of homing-associated molecules on T-cells and tumour blood vessels. Future studies should address whether these approaches improve the efficacy of adoptive T-cell therapies for solid, vascularized cancers in patients

    L-selectin is essential for delivery of activated CD8+ T cells to virus-infected organs for protective immunity

    Get PDF
    Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin

    L-selectin enhanced T cells improve the efficacy of cancer immunotherapy

    Get PDF
    The T cell homing molecule, L-selectin (CD62L), is commonly used as a marker of T cell activation, as expression of L-selectin is downregulated following engagement of the T cell receptor. Furthermore, it is used to distinguish “central memory” T cells (TCM) from, “effector memory” T cells (TEM). It has been reported that CD8+ T cells with a CD62L+ TCM phenotype are better able to control tumour growth than CD62L- TEM CD8+ T cells, while L-selectin knockout T cells are poor at controlling tumour growth. Here, we test the hypothesis that T cells expressing a genetically modified form of L-selectin that is not downregulated following T cell activation (L-selectin enhanced T cells) are better able to control tumour growth than wild type T cells. Using mouse models of solid and disseminated tumours, we show that L-selectin enhancement improves the efficacy of CD8+ T cells in controlling tumour growth. Longitudinal tracking of Zirconium-89 (89Zr) labelled T cells using PET-CT showed that transferred T cells localised to tumours within 24 hours. Early T cell recruitment into tumours was not dependent on L-selectin, however, upregulation of the early activation marker CD69 was higher on L-selectin expressing T cells both inside tumours and in secondary lymphoid organs. Reduced growth of tumours by L-selectin enhanced T cells correlated with increased frequency of CD8+ tumour infiltrating T cells 21 days after commencing therapy. Ex vivo analysis showed that clonal expansion of L-selectin enhanced T cells was slower, and that L-selectin was linked to expression of the proliferation marker Ki67. Together these findings indicate that maintaining L-selectin expression on tumour-specific T cells offers an advantage in mouse models of cancer immunotherapy. The beneficial role of L-selectin may be unrelated to its’ well-known role in T cell homing and instead linked to activation, clonal expansion and retention of therapeutic T cells. These findings have implications both for the selection of T cell subsets for adoptive transfer immunotherapy, and for possible modifications of transgenic chimeric antigen receptor (CAR) T cells to broaden the clinical scope of these therapies

    ADAM17-dependent proteolysis of L-selectin promotes early clonal expansion of cytotoxic T cells

    Get PDF
    L-selectin on T-cells is best known as an adhesion molecule that supports recruitment of blood-borne naĂŻve and central memory cells into lymph nodes. Proteolytic shedding of the ectodomain is thought to redirect activated T-cells from lymph nodes to sites of infection. However, we have shown that activated T-cells re-express L-selectin before lymph node egress and use L-selectin to locate to virus-infected tissues. Therefore, we considered other roles for L-selectin proteolysis during T cell activation. In this study, we used T cells expressing cleavable or non-cleavable L-selectin and determined the impact of L-selectin proteolysis on T cell activation in virus-infected mice. We confirm an essential and non-redundant role for ADAM17 in TCR-induced proteolysis of L-selectin in mouse and human T cells and show that L-selectin cleavage does not regulate T cell activation measured by CD69 or TCR internalisation. Following virus infection of mice, L-selectin proteolysis promoted early clonal expansion of cytotoxic T cells resulting in an 8-fold increase over T cells unable to cleave L-selectin. T cells unable to cleave L-selectin showed delayed proliferation in vitro which correlated with lower CD25 expression. Based on these results, we propose that ADAM17-dependent proteolysis of L-selectin should be considered a regulator of T-cell activation at sites of immune activity

    Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives

    No full text
    Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between micro-RNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance
    corecore