125 research outputs found

    Molecular Detection of Leishmania spp. in Skin and Blood of Stray Dogs from Endemic Areas of Cutaneous Leishmaniasis in Saudi Arabia

    Get PDF
    Dogs can act as reservoirs of canine leishmaniasis, caused by Leishmania species. The aims of this study were to determine the prevalence of canine leishmaniasis using a PCR technique among stray dogs living in three provinces of Saudi Arabia, Riyadh, Al-Ahsa Oasis and Al-Qaseem, here the disease is endemic; and to identify and document different Leishmania to species levels Methods: This cross-sectional investigation was conducted, from Mar 2016 to Apr 2018, in three parts of Saudi Arabia: Central province (Riyadh), Eastern province (Al-Ahsa Oasis) and Al-Qaseem province. Blood samples were collected from 526 dogs; 40 presented cutaneous nodules so were suspected clinically of cutaneous leishmaniasis. Biopsy tissue collections and parasite cultures were performed. A generic kDNA was performed using different primers for Leishmania differentiation. Results: All blood samples were negative for Leishmania infantum infection by molecular analysis, though forty dogs had thick cutaneous lesions in different parts of their body. Four dogs’ skin lesions were associated with dermatitis, splenomegaly and lymphadenomegaly. Parasite culture was used to diagnose cutaneous leishmaniasis, identifying 31/40 (77.5%) positive samples. Overall, of 526 samples, the prevalence of L. major and L. tropica was found to be 4% and 1.9%, respectively. Gender and age had a significant effect on Leishmania prevalence: (P=0.0212 and0.0357), respectively. Conclusion: This was the first molecular study of dog leishmaniasis from Saudi Arabia of dogs confirmed to have cutaneous leishmaniasis. Further epidemiological and molecular investigations of domestic and wild canine infections with L. major, L. tropica and L. infantum in endemic and nonendemic areas of Saudi Arabia are required, for leishmaniasis control

    Impact of Tube Bundle Placement on the Thermal Charging of a Latent Heat Storage Unit

    Get PDF
    The melting process of a multi-tube’s thermal energy storage system in the existence of free convection effects is a non-linear and important problem. The placement of heated tubes could change the convective thermal circulation. In the present study, the impact of the position of seven heat exchanger tubes was systematically investigated. The energy charging process was numerically studied utilizing liquid fraction and stored energy with exhaustive temperature outlines. The tubes of heat transfer fluid were presumed in the unit with different locations. The unit’s heat transfer behavior was assessed by studying the liquid fraction graphs, streamlines, and isotherm contours. Each of the design factors was divided into four levels. To better investigate the design space for the accounted five variables and four levels, an L16 orthogonal table was considered. Changing the location of tubes could change the melting rate by 28%. The best melting rate was 94% after four hours of charging. It was found that the tubes with close distance could overheat each other and reduce the total heat transfer. The study of isotherms and streamlines showed the general circulation of natural convection flows at the final stage of melting was the most crucial factor in the melting of top regions of the unit and reduces the charging time. Thus, particular attention to the tubes’ placement should be made so that the phase change material could be quickly melted at both ends of a unit.</jats:p

    Solidification enhancement in a multi-tube latent heat storage system for efficient and economical production: Effect of number, position and temperature of the tubes

    Get PDF
    Copyright: © 2021 by the authors. Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that moving the HTF tubes to medium positions along the vertical direction is relatively better for enhancing the solidification of PCM with multiple HTF tubes. Repositioning of the HTF tubes on the left side of the unit can slightly improve the heat removal rate by about 0.2 in the case of p5-u-1 and decreases by 1.6% in the case of p5-u-2. It was found also that increasing the distance between the tubes in the vertical direction has a detrimental effect on the PCM solidification mode. Replacing the HTF tubes on the left side of the unit negatively reduces the heat removal rate by about 1.2 and 4.4%, respectively. Further, decreasing the HTF temperature from 15◦C to 10 and 5◦C can increase the heat removal rate by around 7 and 16%, respectively. This paper indicates that the specific concern to the HTF tube arrangement should be made to improve the discharging process attending free convection impact in phase change heat storage

    Investigation of heat transfer enhancement in a triple tube latent heat storage system using circular fins with inline and staggered arrangements

    Get PDF
    Copyright: © 2021 by the authors. Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phasechange materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit, different fin configurations, fin dimensions and HTF flow boundary conditions were explored using computational studies of melting in the PCM triple-tube system. Staggered configuration of fin distribution resulted in significant increases in the rates of PCM melting. The results indicate that the melting rate and heat charging rate could be increased by 37.2 and 59.1%, respectively, in the case of staggered distribution. Furthermore, the use of lengthy fins with smaller thickness in the vertical direction of the storage unit resulted in a better positive role of natural convection; thus, faster melting rates were achieved. With fin dimensions of 0.666 mm × 15 mm, the melting rate was found to be increased by 23.6%, when compared to the base case of 2 mm × 5 mm. Finally, it was confirmed that the values of the Reynolds number and inlet temperatures of the HTF had a significant impact on melting time savings when circular fins of staggered distribution were included
    corecore