12 research outputs found
Data Requirements for Model-Based Cancer Prognosis Prediction
Cancer prognosis prediction is typically carried out without integrating scientific knowledge available on genomic pathways, the effect of drugs on cell dynamics, or modeling mutations in the population. Recent work addresses some of these problems by formulating an uncertainty class of Boolean regulatory models for abnormal gene regulation, assigning prognosis scores to each network based on intervention outcomes, and partitioning networks in the uncertainty class into prognosis classes based on these scores. For a new patient, the probability distribution of the prognosis class was evaluated using optimal Bayesian classification, given patient data. It was assumed that (1) disease is the result of several mutations of a known healthy network and that these mutations and their probability distribution in the population are known and (2) only a single snapshot of the patient's gene activity profile is observed. It was shown that, even in ideal settings where cancer in the population and the effect of a drug are fully modeled, a single static measurement is typically not sufficient. Here, we study what measurements are sufficient to predict prognosis. In particular, we relax assumption (1) by addressing how population data may be used to estimate network probabilities, and extend assumption (2) to include static and time-series measurements of both population and patient data. Furthermore, we extend the prediction of prognosis classes to optimal Bayesian regression of prognosis metrics. Even when time-series data is preferable to infer a stochastic dynamical network, we show that static data can be superior for prognosis prediction when constrained to small samples. Furthermore, although population data is helpful, performance is not sensitive to inaccuracies in the estimated network probabilities
Modeling the next generation sequencing sample processing pipeline for the purposes of classification
BACKGROUND: A key goal of systems biology and translational genomics is to utilize high-throughput measurements of cellular states to develop expression-based classifiers for discriminating among different phenotypes. Recent developments of Next Generation Sequencing (NGS) technologies can facilitate classifier design by providing expression measurements for tens of thousands of genes simultaneously via the abundance of their mRNA transcripts. Because NGS technologies result in a nonlinear transformation of the actual expression distributions, their application can result in data that are less discriminative than would be the actual expression levels themselves, were they directly observable. RESULTS: Using state-of-the-art distributional modeling for the NGS processing pipeline, this paper studies how that pipeline, via the resulting nonlinear transformation, affects classification and feature selection. The effects of different factors are considered and NGS-based classification is compared to SAGE-based classification and classification directly on the raw expression data, which is represented by a very high-dimensional model previously developed for gene expression. As expected, the nonlinear transformation resulting from NGS processing diminishes classification accuracy; however, owing to a larger number of reads, NGS-based classification outperforms SAGE-based classification. CONCLUSIONS: Having high numbers of reads can mitigate the degradation in classification performance resulting from the effects of NGS technologies. Hence, when performing a RNA-Seq analysis, using the highest possible coverage of the genome is recommended for the purposes of classification