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Abstract
A recently proposed optimal Bayesian classification paradigm addresses optimal error rate analysis for small-sample
discrimination, including optimal classifiers, optimal error estimators, and error estimation analysis tools with respect
to the probability of misclassification under binary classes. Here, we address multi-class problems and optimal
expected risk with respect to a given risk function, which are common settings in bioinformatics. We present Bayesian
risk estimators (BRE) under arbitrary classifiers, the mean-square error (MSE) of arbitrary risk estimators under arbitrary
classifiers, and optimal Bayesian risk classifiers (OBRC). We provide analytic expressions for these tools under several
discrete and Gaussian models and present a new methodology to approximate the BRE and MSE when analytic
expressions are not available. Of particular note, we present analytic forms for the MSE under Gaussian models with
homoscedastic covariances, which are new even in binary classification.

Keywords: Risk estimation; Multi-class classification; Bayesian estimation; Genomics; Minimummean-square error;
Small samples

1 Introduction
Classification in biomedicine is often constrained by small
samples so that understanding properties of the error rate
is critical to ensure the scientific validity of a designed
classifier. While classifier performance is typically eval-
uated by employing distribution-free training-data error
estimators such as cross-validation, leave-one-out, or
bootstrap, a number of studies have demonstrated that
these methods are highly problematic in small-sample
settings [1]. Under real data and even under simple
synthetic Gaussian models, cross-validation has been
shown to suffer from a large variance [2] and often
has nearly zero correlation, or even negative correla-
tion, with the true error [3, 4]. Among other problems,
this directly leads to severely optimistic reporting biases
when selecting the best results among several datasets
[5] or when selecting the best classification rule among
several candidates [6] and difficulties with performance
reproducibility [7].
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Furthermore, there are typically no accuracy guarantees
for error estimators when applied under small samples.
Distribution-free bounds on themean-square error (MSE)
or its square root, the root-mean-square (RMS), of an
error estimator with respect to the true error rate are typ-
ically either unavailable or unhelpful under small samples.
Consider leave-one-out error estimation for a discrete his-
togram rule that breaks ties with class 0. The following is
a distribution-free RMS bound [8]:

RMS(̂εloo(S) | θ) ≤
√
1 + 6/e

n
+ 6√

π (n − 1)
, (1)

where S is a random sample, θ is a feature-label distribu-
tion, and n is the sample size. To guarantee an RMS less
than 0.5 for all distributions, this bound indicates that a
sample size of at least n = 209 would be required. Typi-
cally, the error of a classifier should be between 0 and 0.5
so that an RMS of 0.5 is trivially guaranteed.
Rather than a distribution-free approach, recent work

takes a Bayesian approach to address these problems. The
idea is to assume the true distributions characterizing
classes in the population are members of an uncertainty
class of models. We also assume that members of the
uncertainty class are weighted by a prior distribution,
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and after observing a sample, we update the prior to a
posterior distribution. For a given classifier we may find
an optimal MSE error estimator, called a Bayesian error
estimator (BEE) [9, 10] and evaluate the MSE of any arbi-
trary error estimator [11, 12]. These quantities are found
by conditioning on the sample in hand and averaging
with respect to the unknown population distribution via
the posterior, rather than by conditioning on the dis-
tribution and averaging over random samples as in (1).
Not only does the Bayesian framework supply more pow-
erful error estimators, but the sample-conditioned MSE
allows us to evaluate the accuracy of error estimation.
The Bayesian framework also facilitates optimal Bayesian
classification (OBC), which provides decision boundaries
to minimize the BEE [13, 14]. In this way, the Bayesian
framework can be used to optimize both error estimation
and classification.
Classifier design and analysis in the Bayesian framework

have previously been developed for binary classification
with respect to the probability of misclassification. How-
ever, it is common in small-sample classification problems
to be faced with classification under multiple classes and
for different types of error to be associated with different
levels of risk or loss. A few classical classification algo-
rithms naturally permit multiple classes and arbitrary loss
functions; for example, a plug-in rule takes the functional
form for an optimal Bayes decision rule under a given
modeling assumption and substitutes sample estimates
of model parameters in place of the true parameters.
This can be done with linear discriminant analysis (LDA)
and quadratic discriminant analysis (QDA) for multiple
classes with arbitrary loss functions, which essentially
assume that the underlying class-conditional densities
are Gaussian with equal or unequal covariances, respec-
tively. Most training-data error estimation methods, for
instance, cross-validation, can also be generalized to han-
dle multiple classes and arbitrary loss functions. However,
it is expected that the same difficulties encountered under
binary classes with simple zero-one loss functions (where
the expected risk reduces to the probability of misclassifi-
cation) will carry over to the more general setting, as they
have in ROC curve estimation [15].
Support vector machines (SVM) are inherently binary

but can be adapted to incorporate penalties that influence
risk by implementing slack terms or applying a shrinkage
or robustifying objective function [16, 17]. It is also com-
mon to construct multi-class classifiers from binary clas-
sifiers using the popular “one-versus-all” or “all-versus-all”
strategies [18]. The former method builds several binary
classifiers by discriminating one class, in turn, against
all others, and at a given test point reports the class
corresponding to the highest classification score. The lat-
ter discriminates between each combination of pairs of
classes and reports a majority vote. However, it is unclear

how one may assess the precise effect of these adaptations
on the expected risk.
We are thus motivated to generalize the BEE, sample-

conditioned MSE, and OBC to treat multiple classes
with arbitrary loss functions. We will present analo-
gous concepts of Bayesian risk estimation (BRE), the
sample-conditioned MSE for risk estimators, and optimal
Bayesian risk classification (OBRC).We will show that the
BRE andOBRC can be represented in the same form as the
expected risk and Bayes decision rule with unknown true
densities replaced by effective densities. This approach is
distinct from the simple plug-in rule discussed earlier,
since the form of the effective densities may not be the
same as the individual densities represented in the uncer-
tainty class. We will also develop an interpretation of the
conditional MSE based on an effective joint density, which
is new even under binary classes with a zero-one loss
function.
Furthermore, we will provide analytic solutions under

several models: discrete spaces with Dirichlet pri-
ors (discrete models) and Gaussian distributions with
known, independent scaled identity, independent arbi-
trary, homoscedastic scaled identity, and homoscedastic
arbitrary covariance models, all with conjugate priors
(Gaussian models). We provide expressions for the BRE
and conditional MSE for arbitrary classification in the
discrete model and binary linear classification in the
Gaussian model. The analytic form that we provide for
the MSE of arbitrary error estimators under homoscedas-
tic models is completely new without an analog in prior
work under binary classification and zero-one loss. For
models in which an analytic form for the BRE and condi-
tional MSE are unavailable, for instance, under multi-class
or non-linear classification in the Gaussian model, we also
discuss efficient methods to approximate these quantities.
In particular, we present a new computationally efficient
method to approximate the conditional MSE based on the
effective joint density.

2 Notation
We denote random quantities with capital letters, e.g., Y ;
realizations of random variables with lowercase letters,
e.g., y; and vectors in bold, e.g.,X and x. Matrices will gen-
erally be in bold upper case, e.g., S. Spaces will be denoted
by a stylized font, e.g., X . Distributions with condition-
ing will be made clear through the function arguments;
for instance, we write the distribution of X given Y as
f (x | y). The probability space of expectations will be made
clear by denoting random quantities in the expectation
and conditioning, e.g., the expectation of Y conditioned
on the random variable X and the event C = c is denoted
by E[Y |X, c]. When the region of integration in an inte-
gral is omitted then this region is the whole space. Any
exceptions in notation will be defined throughout.
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3 Bayes decision theory
We next review concepts from classical Bayes decision
theory. Consider a classification problem in which we are
to predict one ofM classes, y = 0, . . . ,M− 1, from a sam-
ple drawn in feature space X . Let X and Y denote a ran-
dom feature vector and its corresponding random label.
Let f (y | c) be the probability mass function of Y, parame-
terized by a vector c, and for each y, let f (x | y, θy) be the
class-y-conditional density of X, parameterized by a vec-
tor θy. The full feature-label distribution is parameterized
by c and θ = {θ0, . . . , θM−1}.
Let λ(i, y) be a loss function quantifying a penalty in pre-

dicting label iwhen the true label is y. The conditional risk
in predicting label i for a given point, x, is defined as

R(i, x, c, θ) = E[ λ(i,Y ) | x, c, θ ]

=
M−1∑
y=0

λ(i, y)f (y | x, c, θ)

=
∑M−1

y=0 λ(i, y)f (y | c)f (x | y, θy)∑M−1
y=0 f (y | c)f (x | y, θy)

. (2)

The expected risk of a given classification rule, ψ : X →
{0, . . . ,M − 1}, is given by

R(ψ , c, θ) = E[R(ψ(X),X, c, θ) | c, θ ]

=
M−1∑
y=0

M−1∑
i=0

λ(i, y)f (y | c)εi,y(ψ , θy), (3)

where

εi,y(ψ , θy) =
∫

�i
f (x | y, θy)dx = P(X ∈ �i | y, θy) (4)

is the probability that a class-y point will be assigned class
i by the classifier ψ , and the �i = {x ∈ X : ψ(x) = i}
partition the sample space into decision regions.
A Bayes decision rule (BDR) minimizes expected risk or,

equivalently, the conditional risk at each fixed point x:

ψBDR (x) = arg min
i∈{0,...,M−1}R(i, x, c, θ). (5)

By convention, we break ties with the lowest index, i ∈
{0, . . . ,M − 1}, minimizing R(i, x, c, θ).

4 Optimal Bayesian risk classification
In practice, the feature-label distribution is unknown
so that we must train a classifier and estimate risk or
error with data. The Bayesian framework resolves this by
assuming the true feature-label distribution is a member
of a parameterized uncertainty class. In particular, assume
that c is the probability mass function of Y, that is, c =
{c0, . . . , cM−1} ∈ �M−1, where f (y | c) = cy and �M−1

is the standard M − 1 simplex defined by cy ∈[ 0, 1] for
y ∈ {0, . . . ,M− 1} and∑M−1

y=0 cy = 1. Also assume θy ∈ Ty
for some parameter space Ty, and θ ∈ T = T0×. . .×TM−1.

Let C and 	 denote random vectors for parameters c and
θ , respectively. Finally, assume C and 	 are independent
prior to observing data and assign prior probabilities, π(c)
and π(θ).
Priors quantify uncertainty we have about the distribu-

tion before observing the data. Although non-informative
priors may be used as long as the posterior is normaliz-
able, informative priors can supplement the classification
problem with information to improve performance when
the sample size is small. This is key for problems with
limited or expensive data. Under mild regularity con-
ditions, as we observe sample points, this uncertainty
converges to a certainty on the true distribution param-
eters, where more informative priors may lead to faster
convergence [12]. For small samples, the performance
of Bayesian methods depends heavily on the choice of
prior. Performance tends to be modest but more robust
with a non-informative or weakly informative prior. Con-
versely, informative priors offer the potential for great
performance improvement, but if the true population
distribution is not well represented in the prior, then per-
formance may be poor. This trade-off is acceptable as
long as the prior is an accurate reflection of available
scientific knowledge so that one is reasonably sure that
catastrophic results will not occur. If multiple models are
scientifically reasonable but result in different inferences,
and if it is not possible to determine which model is best
from data or prior knowledge, then the range of infer-
ences must be considered [19]. For the sake of illustration,
in simulations, we will utilize either low-information pri-
ors or a simple prior construction method for microarray
data, although modeling and prior construction remain
important problems [20].
Let S be a sample, that is, a realization of n independent

labeled points drawn from X . Also let xyi denote the ith
sample point in class y and ny denote the number of sam-
ple points observed from class y. Given a sample, the
priors are updated to posterior densities:

f (c, θ | S) ∝ π(c)π(θ)

M−1∏
y=0

ny∏
i=1

f (xyi , y | c, θy), (6)

where the product on the right is the usual likelihood
function. Since f (xyi , y | c, θy) = cy f (x

y
i | y, θy), we may

write f (c, θ | S) = f (c | S) f (θ | S), where

f (c | S) ∝ π(c)
M−1∏
y=0

(cy)ny (7)

and

f (θ | S) ∝ π(θ)

M−1∏
y=0

ny∏
i=1

f (xyi | y, θy) (8)
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are marginal posteriors of C and 	. Thus, independence
between C and 	 is preserved in the posterior. Constants
of proportionality are found by normalizing the integral of
posteriors to 1. When the prior density is proper, this all
follows from Bayes’ rule; otherwise, (7) and (8) are taken
as definitions, where we require posteriors to be proper.
f (c | S) depends on the prior and samplingmethod used.

For instance, if C is known, then π(c) and f (c | S) are
both point masses at the known value of C. Under sepa-
rate sampling, in which the number of sample points in
each class is fixed to an arbitrary value prior to sampling,
f (c | S) = π(c). Under random sampling, the sample size
is fixed at n and the number of points observed from
each class is determined by independent draws from the
feature-label distribution. Given a Dirichlet prior on C
with hyperparameters α = {α0, . . . ,αM−1}, a special case
being α0 = . . . = αM−1 = 1 for a uniform distribution
on �M−1, then under random sampling the posterior on
C is still Dirichlet with hyperparameters α∗

y = αy + ny.
Defining α∗+ =∑M−1

i=0 α∗
i , we also have for y �= z,

E
[
Cy | S] = α∗

y
α∗+

, (9)

E
[
C2
y | S
]

=
α∗
y

(
1 + α∗

y

)
α∗+
(
1 + α∗+

) , (10)

E
[
CyCz | S] = α∗

yα
∗
z

α∗+
(
1 + α∗+

) . (11)

4.1 Bayesian risk estimation
We define the BRE to be the minimummean-square error
(MMSE) estimate of the expected risk or, equivalently, the
conditional expectation of the expected risk given obser-
vations. Given a sample, S, and a classifier, ψ , that is not
informed by θ , thanks to posterior independence between
C and 	, the BRE is given by,

R̂(ψ , S) = E[R(ψ ,C,	) | S]

=
M−1∑
y=0

M−1∑
i=0

λ(i, y)E[ f (y |C) | S] E[ εi,y (ψ ,	) | S] .

(12)

If we assume that {X,Y } and S are independent given C
and 	, then

f (y | S) =
∫

f (y | c)f (c | S)dc
= E

[
f (y |C) | S] , (13)

f (x | y, S) =
∫

f
(
x | y, θy

)
f
(
θy | S) dθy

= E[ f (x | y,	y) | S] . (14)

We may thus write the BRE in (12) as

R̂(ψ , S) =
M−1∑
y=0

M−1∑
i=0

λ(i, y)f (y | S)̂εi,y(ψ , S), (15)

where ε̂i,y(ψ , S) = E[ εi,y (ψ ,	) | S] is the posterior prob-
ability of assigning a class-y point to class i,

ε̂i,y(ψ , S) = E
[∫

�i
f
(
x | y,	y

)
dx
∣∣∣∣S]

=
∫

�i
E
[
f
(
x | y,	y

) | S] dx
=
∫

�i
f (x | y, S) dx (16)

= P (X ∈ �i | y, S) . (17)

The second equality follows from Fubini’s theorem, and
in the last equality, X is a random vector drawn from the
density in the integrand of (16). We also have f (y | S) =
E
[
Cy | S], which depends on the prior for C and is easily

found, for instance, from (9) under Dirichlet posteriors.
Comparing (3) and (15), observe that f (y | S) and f (x | y, S)
play roles analogous to f (y | c) and f (x | y, θy) in Bayes
decision theory. We thus call f (x | y, S) the effective class-y
conditional density or simply the effective density.
Whereas the BRE addresses overall classifier perfor-

mance across the entire sample space, X , we may also
consider classification at a fixed point, x ∈ X . We define
the Bayesian conditional risk estimator (BCRE) for class
i ∈ {0, . . . ,M−1} at point x ∈ X to be theMMSE estimate
of the conditional risk:

R̂(i, x, S) = E[R(i, x,C,	) | S]

=
M−1∑
y=0

λ(i, y)E[ f (y | x,C,	) | S] . (18)

Again assuming {X,Y } and S are independent givenC and
	, and if we further assume X is independent from C, 	,
and S , then,

E[ f (y | x,C,	) | S] =
∫

f (y | x, c, θ)f (c, θ | S)dcdθ

=
∫

f (y, c, θ | x, S)dcdθ

= f (y | x, S).
Applying Bayes’ rule,

f (y | x, S) = f (y | S)f (x | y, S)∑M−1
y=0 f (y | S)f (x | y, S) , (19)

and applying this to (18), we have

R̂(i, x, S) =
∑M−1

y=0 λ(i, y) f (y | S)f (x | y, S)∑M−1
y=0 f (y | S) f (x | y, S) . (20)
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This is analogous to (2) in Bayes decision theory. Further-
more, given a classifier ψ ,

E
[̂
R(ψ(X),X, S)

∣∣S] =
M−1∑
i=0

∫
�i
R̂(i,X, S) f (x | S)dx

= R̂(ψ , S),

where f (x | S) = ∑M−1
y=0 f (y | S)f (x | y, S) is the marginal

distribution of x given S. Hence, the BRE of ψ is the mean
of the BCRE across the sample space.
For binary classification, ε̂i,y(ψ , S) has been solved in

closed form as components of the BEE for both discrete
models under arbitrary classifiers and Gaussian models
under linear classifiers, so the BRE with an arbitrary loss
function is available in closed form for both of these
models. When closed-form solutions for ε̂i,y(ψ , S) are not
available, from (17), ε̂i,y(ψ , S) may be approximated for all
i and a given fixed y by drawing a large synthetic sam-
ple from f (x | y, S) and evaluating the proportion of points
assigned class i. The final approximate BRE can be found
by plugging the approximate ε̂i,y(ψ , S) for each y and i
into (15).
A number of practical considerations for BEEs

addressed under binary classification naturally carry over
to multiple classes, including robustness to false model-
ing assumptions [9, 10] and a prior calibration method
for microarray data analysis using features discarded by
feature selection and a method-of-moments approach
[21]. Furthermore, classical frequentist consistency holds
for BREs on fixed distributions in the parameterized
family owing to the convergence of posteriors in both the
discrete and Gaussian models [12].

4.2 Optimal Bayesian risk classification
We define the OBRC to minimize the BRE, that is,

ψOBRC = arg inf
ψ∈C R̂ (ψ , S) , (21)

where C is a family of classifiers. If C is the set of all clas-
sifiers with measurable decision regions, it can be shown
that ψOBRC exists and is given for any x ∈ X by

ψOBRC (x) = arg min
i∈{0,...,M−1} R̂(i, x, S). (22)

Analogously to the relationship between the BRE and
expected risk, the OBRC has the same functional form
as the BDR with f (y | S) substituted for the true class
probability, f (y | c), and f (x | y, S) substituted for the true
density, f

(
x | y, θy

)
, for all y. Closed-form OBRC are avail-

able for any model in which f (x | y, S) has been found,
including discrete and Gaussian models [13]. A num-
ber of important properties also carry over, including
invariance to invertible transformations, pointwise con-
vergence to the Bayes classifier, and robustness to false
modeling assumptions.

4.3 Sample-conditionedMSE of risk estimation
In a typical small-sample classification scenario, a classi-
fier is trained from data and a risk estimate found for the
true risk of this classifier. A key question arises: How close
is the risk estimate to the actual risk? A Bayesian approach
answers this question with the sample-conditioned MSE
of the BRE relative to the true expected risk:

MSE(̂R(ψ , S) | S) = E
[(
R (ψ ,C,	) − R̂(ψ , S)

)2 ∣∣∣∣S]
= Var (R(ψ ,C,	) | S) . (23)

This MSE is precisely the quantity that the BRE mini-
mizes, and it quantifies the accuracy of R̂ as an estimator
of R, conditioned on the actual sample in hand. Thanks
to posterior independence between C and 	, it can be
decomposed:

MSE(̂R(ψ , S) | S)

=
⎛⎝M−1∑

y=0

M−1∑
z=0

M−1∑
i=0

M−1∑
j=0

λ(i, y)λ(j, z)E
[
CyCz | S]

× E
[
εi,y(ψ ,	y)ε

j,z(ψ ,	z) | S]
⎞⎠− (̂R(ψ , S))2,

(24)

where we have applied (3) in (23) and noted E
[
f (y |C)

f(z |C) | S] = E
[
CyCz | S]. Second-order moments of

Cy depend on our prior for C and can be found, for
instance, from (10) and (11) under Dirichlet posteriors.
Hence, evaluating the conditional MSE of the BRE boils
down to evaluating the BRE itself, R̂(ψ , S), and evaluat-
ing expressions of the form E

[
εi,y(ψ ,	y)εj,z(ψ ,	z) | S].

Furthermore, if we additionally assume 	0, . . . ,	M−1 are
pairwise independent, then when y �= z,

E
[
εi,y(ψ ,	y)ε

j,z(ψ ,	z) | S] = ε̂i,y(ψ , S)̂εj,z(ψ , S),
(25)

where ε̂i,y(ψ , S), given in (16), is a component of the
BRE. The conditional MSE of an arbitrary risk estimate,
R̂•(ψ , S), is also of interest and may be easily found from
the BRE and the MSE of the BRE:

MSE(̂R•(ψ , S) | S)
= E

[(
R (ψ ,C,	) − R̂•(ψ , S)

)2 ∣∣∣∣S]
= MSE(̂R(ψ , S) | S) + (̂R(ψ , S) − R̂•(ψ , S))2. (26)

In this form, the optimality of the BRE is clear.
For binary classification with zero-one loss, the sample-

conditioned MSE of the BRE converges to zero almost
surely as sample size increases, for both discrete mod-
els under arbitrary classifiers and Gaussian models with
independent covariances under linear classifiers [12].
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Closed-form expressions for the MSE are available in
these models. In this work, we extend this to multi-class
discrimination under discrete models and binary linear
classification under homoscedastic Gaussian models. For
cases where closed-form solutions are unavailable, in the
next section, we present a method to approximate the
MSE.

4.4 Efficient computation
The following new interpretation for E

[
εi,y(ψ ,	y)

εj,z(ψ ,	z) | S] is useful in both deriving analytic forms for
and approximating the MSE. From (4),

E
[
εi,y(ψ ,	y)ε

j,z(ψ ,	z) | S]
=
∫
T

∫
�i
f (x | y, θy)dx

∫
�j
f (w | z, θz)dwf (θ | S)dθ

=
∫

�i

∫
�j

∫
T
f (x | y, θy)f (w | z, θz)f (θ | S)dθdwdx,

(27)

where we have again applied Fubini’s theorem. Further, we
may write

E
[
εi,y(ψ ,	y)ε

j,z(ψ ,	z) | S]
=
∫

�i

∫
�j
f (x,w | y, z, S)dwdx (28)

= P
(
X ∈ �i ∩ W ∈ �j | y, z, S

)
, (29)

where X and W are random vectors drawn from an
effective joint density, defined using similar independence
assumptions as in (14):

f (x,w | y, z, S) =
∫

f (x | y, θy)f (w | z, θz)f (θ | S)dθ .

(30)

The marginal densities of X and W under f (x,w | y, z, S)
are precisely the effective density, i.e.,∫

X
f (x,w | y, z, S)dw

=
∫
X

∫
T
f (x | y, θy)f (w | z, θz)f (θ | S)dθdw

=
∫
T
f (x | y, θy)

∫
X
f (w | z, θz)dwf (θ | S)dθ

=
∫
Ty
f (x | y, θy)f (θy | S)dθy

= f (x | y, S),

where f (θy | S) is the marginal posterior density of 	y.
Further, we have an effective conditional density of W
given X,

f (w | x, y, z, S) = f (x,w | y, z, S)
f (x | y, S)

=
∫

f (w | z, θz) f (x | y, θy)f (θ | S)∫
f (x | y, θ ′

y)f (θ ′
y | S)dθ ′

y
dθ

=
∫

f (w | z, θz)f (θ | S ∪ {x, y})dθ

= f (w | z, S ∪ {x, y}),

where we have used the fact that the fractional term in the
integrand of the second equality is of the same form as
the posterior defined in (8), updated with a new indepen-
dent sample point with feature vector x and class y. Hence,
the effective joint density may be easily found, once the
effective density is known. Furthermore, from (29), we
may approximate E

[
εi,y(ψ ,	y)εj,z(ψ ,	z) | S] by drawing

a large synthetic sample from f (x | y, S), drawing a single
point, w, from the effective conditional density f (w | z, S∪
{x, y}) for each x, and evaluating the proportion of pairs,
(x,w), for which x ∈ �i andw ∈ �j. Additionally, since x is
marginally governed by the effective density, from (17) we
may approximate ε̂i,y(ψ , S) by evaluating the proportion
of x in �i.
Evaluating the OBRC, BRE, and conditional MSE

requires obtaining E[Cy | S], E[C2
y | S] and E[CyCz | S]

based on the posterior for C and finding the effec-
tive density, f (x | y, S), and the effective joint den-
sity, f (x,w | y, z, S), based on the posterior for 	. At
a fixed point, x, one may then evaluate the pos-
terior probability of each class, f (y | x, S), from (19)
and the BCRE from (20). The OBRC is then found
from (22) or, equivalently, by choosing the class, i, that
minimizes

∑M−1
y=0 λ(i, y)E[Cy | S] f (x | y, S). For any clas-

sifier, the BRE is given by (15) with ε̂i,y(ψ , S) given
by (16) (or equivalently (17)) using the effective den-
sity, f (x | y, S). The MSE of the BRE is then given
by (24), where E

[
εi,y(	y)εj,z(	z) | S] is given by (25) when

	0, . . . ,	M−1 are pairwise independent and y �= z,
and E

[
εi,y(	y)εj,z(	z) | S] is otherwise found from (28)

(or equivalently (29)) using the effective joint density,
f (x,w | y, z, S). The MSE of an arbitrary risk estimator can
also be found from (26) using the BRE and theMSE for the
BRE. We summarize these tools for several discrete and
Gaussian models in Appendices 1, 2, and 3 by providing
the effective density, the effective joint density (or a related
density), ε̂i,y(ψ , S), and E

[
εi,y(	y)εj,z(	z) | S].

5 Simulation setup and results
In the this section, we examine several synthetic data
simulations, where random distributions and samples are
generated from a low-information prior, and demonstrate
the performance gain and optimality of Bayesian methods
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within the Bayesian framework. We also examine perfor-
mance with informed priors in two real datasets.

5.1 Classification rules
We consider five classification rules: OBRC, linear dis-
criminant analysis (LDA), quadratic discriminant analy-
sis (QDA), linear support vector machine (L-SVM), and
radial basis function SVM (RBF-SVM). We will imple-
ment OBRC under Gaussian models. We used built-in
MATLAB functions to implement LDA and QDA. For
a collection of binary-labeled training sample points, an
SVM classifier finds a maximal margin hyperplane based
on a well-behaved optimization objective function and
a set of constraints. When the data are not perfectly
linearly separable, introduction of slack variables in the
optimization procedure leads to soft margin classifiers for
whichmislabeled sample points are allowed. The resulting
hyperplane in the feature space is called L-SVM. Alter-
natively, the underlying feature space can be transformed
to a higher dimensional space where the data becomes
linearly separable. The equivalent classifier back in the
original feature space will generally be non-linear [22, 23].
When the kernel function is a Gaussian radial basis func-
tion, we call the corresponding classifier RBF-SVM. We
used the package LIBSVM, which, by default, implements
a one-versus-one approach for multi-class classification
[24]. Since SVM classifiers optimize relative to their own
objective function (for example, hinge loss), rather than
expected risk, we exclude them from our analysis when
using a non-zero-one loss function.
For all classification rules, we calculate the true risk

defined in (3) and (4). We find the exact value if a formula
is available; otherwise, we use a test sample of at least
10,000 points generated from the true feature-label distri-
butions, stratified relative to the true class prior probabil-
ities. This will yield an approximation of the true risk with
RMS ≤ 1/

√
4 × 10, 000 = 0.005 [8].

5.2 Risk estimation rules
We consider four risk estimation methods: BRE, 10-fold
cross-validation (CV), leave-one-out (LOO), and 0.632
bootstrap (boot). When we do not have closed-form for-
mulae for calculating the BRE, we approximate it by draw-
ing a sample of 1,000,000 points from the effective density
of each class. In CV, the training data, S, is randomly par-
titioned into 10 stratified folds, S(i) for i = 1, 2, . . . , 10.
Each fold, in turn, is held out of the classifier design step
as the test set, and a surrogate classifier is designed on
the remaining folds, S \ S(i), as the training set. The risk
of each surrogate classifier is estimated using S(i). The
resulting risk values from all surrogate classifiers are then
averaged to get the CV estimate. To reduce “internal vari-
ance” arising from random selection of the partitions, we
average the CV estimates over 10 repetitions (10 randomly

generated partitions over S). If the number of folds equals
the sample size, n, then each fold consists of a single point
and we get the LOO risk estimation.
Bootstrap risk estimators are calculated using bootstrap

samples of size n, where in each bootstrap sample, points
are drawn, with replacement, from the original training
dataset. A surrogate classifier is designed on the bootstrap
sample and its risk estimated using sample points left out
of the bootstrap sample. The basic bootstrap estimator is
the expectation of this risk with respect to the bootstrap
sampling distribution. The expectation is usually approxi-
mated byMonte Carlo repetitions (100 in our simulations)
over a number of independent bootstrap samples. It is
known that this estimate is high biased. To reduce bias, the
0.632 bootstrap reports a linear combination of this esti-
mate, with weight 0.632, and the low-biased resubstitution
risk estimate, with weight 0.368 [25–27].
Under linear classification, the sample-conditioned

MSE from (24) is found analytically by evaluating
E
[
εi,y(	y)εj,y(	y) | S] from (52), plugging in the appro-

priate values for k and γ 2 depending on the covariance
model, and E

[
εi,y(	y)εj,z(	z) | S] for z �= y are found

via (25) for independent and (53) for homoscedastic
covariance models, plugging in appropriate values for k
and γ 2.When analytic forms are not available, the sample-
conditioned MSE is approximated as follows. In indepen-
dent covariance models, for each sample point generated
to approximate the BRE, we draw a single point from the
effective conditional density with y = z, giving 1,000,000
sample point pairs to approximate E

[
εi,y(	y)εj,y(	y) | S]

for each y. In homoscedastic covariance models, to find
the BRE, we have 1,000,000 points available from the
effective density for each y. We generate an additional
1, 000, 000 × (M − 1) synthetic points for each y, thus
allocating 1,000,000 synthetic points for each combina-
tion of y and z. For each of these points, we draw a single
point from the effective conditional density of a class-z
point given a class-y point. For each y and z, the corre-
sponding 1,000,000 point pairs are used to approximate
E
[
εi,y(	y)εj,z(	z) | S].

5.3 Synthetic data
In synthetic data simulations, we assume all classes are
equally likely and that the data is stratified, giving an
equal number of sample points from each class. We fur-
ther assume Gaussian feature-label distributions. Table 1
lists all models and prior distributions used. We imple-
ment both a low number of features (D = 2) and a high
number of features (D = 20), with independent arbi-
trary, homoscedastic arbitrary, and independent identity
covariance priors. Under each type of prior, we con-
sider classification under a non-zero-one loss function for
binary classification and a zero-one loss function for mul-
tiple classes. For each prior model and a fixed sample size,
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Table 1 Synthetic data classification settings and prior models

D M ν0, . . . , νM−1 m0, . . . ,mM−1 κy (ky )
Sy

ky−2 Prior (cov.) λ

Model 1 2 2 12, 2

⎡⎣ 0

0

⎤⎦ ,

⎡⎣ 0.5

0.5

⎤⎦ 6 (5) 0.3 I2 Indep. arbit.

⎡⎣ 0 2

1 0

⎤⎦
Model 2 2 2 12, 2

⎡⎣ 0

0

⎤⎦ ,

⎡⎣ 0.5

0.5

⎤⎦ 6 (5) 0.3 I2 Homo. arbit.

⎡⎣ 0 2

1 0

⎤⎦
Model 3 2 5 12, 2, 2, 2, 2

⎡⎣ 0

0

⎤⎦ ,

⎡⎣ 1

1

⎤⎦ ,

⎡⎣ −1

−1

⎤⎦ ,

⎡⎣ 1

−1

⎤⎦ ,

⎡⎣ −1

1

⎤⎦ 6 (5) 0.3 I2 Indep. arbit. 0–1 loss

Model 4 2 5 12, 2, 2, 2, 2

⎡⎣ 0

0

⎤⎦ ,

⎡⎣ 1

1

⎤⎦ ,

⎡⎣ −1

−1

⎤⎦ ,

⎡⎣ 1

−1

⎤⎦ ,

⎡⎣ −1

1

⎤⎦ 6 (5) 0.3 I2 Homo. arbit. 0–1 loss

Model 5 20 2 12, 2 020, (0.05)20 −20.65 (5) 0.3 I2 Indep. iden.

⎡⎣ 0 2

1 0

⎤⎦
Model 6 20 2 20, 20 020, 020 −20.65 (5) 0.3 I20 Indep. iden.

⎡⎣ 0 2

1 0

⎤⎦
Model 7 20 5 12, 2, 2, 2, 2 020, (0.1)20, (−0.1)20, −20.65 (5) 0.3 I20 Indep. iden. 0–1 loss⎡⎣ (0.1)10

(−0.1)10

⎤⎦ ,

⎡⎣ (−0.1)10

(0.1)10

⎤⎦
Model 8 20 5 20, 20, 20, 20, 20 020, 020, 020, 020, 020 −20.65 (5) 0.3 I20 Indep. iden. 0–1 loss

0k and (a)k represent all-zero and all-a column vectors of length k, respectively

we evaluate classification performance in a Monte Carlo
estimation loop with 10,000 iterations. In each iteration,
we follow a two-step procedure for sample generation:
(1) generate random feature-label distribution parame-
ters from the prior (each serving as the true underlying
feature-label distribution) and (2) generate a random sam-
ple of size n from this fixed feature-label distribution. The
generated random sample is used to train classifiers and
evaluate their true risk. In the non-zero-one loss case, we
also estimate risk and evaluate its accuracy using the per-
formance metrics discussed earlier. We vary the sample
size throughout and analyze its effect on performance.

5.4 Real data
We consider two real datasets. The first is a breast can-
cer dataset containing 295 sample points [28], which will
be used to demonstrate binary classification under a non-
zero-one loss function. The second is composed of five
different cancer types from The Cancer Genome Atlas
(TCGA) project, which demonstrates multi-class classifi-
cation under zero-one loss.
In all real-data simulations, we assume that cy is known

and equal to the proportion of class-y sample points in the
whole dataset. We form a Monte Carlo estimation loop to
evaluate classification and risk estimation, where we iter-
ate 1000 times with the breast cancer dataset and 10,000
times with the TCGA dataset. In each iteration, we obtain
a stratified training sample of size n, i.e., we select a subset
of the original dataset, keeping the proportion of points
in class y as close as possible to cy for every y. We use

these training points to design several classifiers, while
the remaining sample points are used as holdout data to
approximate the true risk of each designed classifier. For
the breast cancer dataset, we also use the training data
to estimate risk and find the sample-conditioned MSE of
the BRE. We vary sample size and analyze its effect on
performance.
To implement Bayesian methods, we assume Gaussian

distributions with arbitrary independent covariances in
all real-data simulations. We calibrate hyperparameters,
defined in Appendix 2, using a variant of the method-
of-moments approach presented in [21]. In particular, we
construct a calibration dataset from features not used to
train the classifier and set νy = sy/ty, κy = 2(s2y/uy) + D +
3,my =[my, . . . ,my], and Sy = (κy−D−1)syID, wheremy
is the mean of the means of features among class-y points
of the calibration dataset, and sy is the mean of the vari-
ances of features in class y. ty is the variance of the means
of features in class y, where the 10 % of the means with
the largest absolute value are discarded. Likewise, uy is the
variance of the variances of features in class y, where the
10 % of the variances with the largest value are discarded.
In the breast cancer data, 180 patients are assigned to

class 0 (good prognosis) and 115 to class 1 (bad prognosis)
in a 70-feature prognosis profile. A correct prognosis is
associated with 0 loss, wrongly declaring a good prognosis
incurs a loss of 1, and wrongly declaring a bad prognosis
incurs a loss of 2. We use pre-selected features for clas-
sifier training, originally published in [29]. When D = 2,
these features are CENPA and BBC3, and whenD = 5, we
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also add CFFM4, TGFB3, and DKFZP564D0462. Rather
than discard the 70 − D features not used for classifica-
tion, we use these features to calibrate priors using the
method-of-moments approach described above.
For our second dataset, we downloaded level-3 microar-

ray data from the TCGA data portal for five different
kinds of cancers: breast invasive carcinoma (BRCA) with
593 sample points, colon adenocarcinoma (COAD) with
174 sample points, kidney renal clear cell carcinoma
(KIRC) with 72 sample points, lung squamous cell carci-
noma (LUSC) with 155 sample points, and ovarian serous
cystadenocarcinoma (OV) with 562 sample points. We
pooled all the sample points into a single dataset, removed
features with missing values in any cancer type (17,016
features remained out of 17,814), and quantile-normalized
the data with the median of the ranked values. We pre-
select features for classifier training and prior calibration
using the full dataset and one of two methods, which both
operate in two phases: in phase 1, we passD+100 features,
and in phase 2, we select D features from those passing
phase 1. The D features passing both phases are used for
classifier training, and the features passing phase 1 but
not phase 2 are used for prior calibration. The first feature
selection method (FS-1) passes features that minimize
a score evaluating separation between classes in phase
1 and selects features that minimize a score evaluating
Gaussianity of the classes in phase 2. To evaluate separa-
tion between classes in phase 1, for each pair of classes, we
obtain t-test p-values for each feature and rank these
across all features, low p-values being assigned a lower
rank, and finally, we report the rank product score for
each feature over all 10 pairs of classes. To evaluate Gaus-
sianity in phase 2, for each class, we rank Shapiro-Wilk
test p-values across all features passing phase 1, high
p-values being assigned a lower rank, and report the rank
product score for each feature across all five classes. The
second feature selection method (FS-2) passes features
minimizing the rank product score from Shapiro-Wilk
tests applied to all 17,016 features in phase 1, and in phase
2, we select D features from those passing phase 1 using
sequential forward search (SFS) with LDA classification
and resubstitution risk as the optimization criterion.

5.5 Discussion
Models 1 and 2 focus on the effect of risk on classi-
fication and risk estimation performance. In Fig. 1, we
evaluate the performance of risk estimators and classi-
fiers under model 1. Graphs in the left column present
the mean, averaged over all 10,000 sample realizations, of
the true risk and all risk estimators considered for LDA,
QDA, and OBRC classification. Note for small samples of
size n = 20 and LDA or QDA classification, surrogate
classifiers in the bootstrap risk estimator are occasionally
undefined depending on the realized bootstrap sample.

These events are thrown out so that only a subset of the
original 10,000 sample realizations are used to approxi-
mate the mean bootstrap risk estimator. The graphs on
the right column of Fig. 1 present the square root of the
mean, averaged over all sample realizations, of the square
difference between the true risk and each risk estimator,
which we call the empirical RMS. The square root of the
mean, averaged over all sample realizations, of the sample-
conditioned MSE of the BRE from (24), which we call the
Bayesian RMS, is also shown.
The BRE is an unbiased estimator, so the mean true

risk and mean BRE curves should be aligned with enough
iterations, which is observed. The empirical and Bayesian
RMS both approximate the unconditional RMS so that
these curves should also be aligned with enough itera-
tions, as observed. Furthermore, the BRE is theoretically
optimal in both the sample-conditioned and uncondi-
tioned RMS, and as expected, the empirical and Bayesian
RMS curves for BRE under each classification rule outper-
form all other risk estimation rules. Thus, the BRE yields
a significant improvement over classical risk estimators
in terms of both bias and RMS performance within the
Bayesian model. If we compare classification rules, the
RMS of BRE is consistently lower for OBRC than LDA and
QDA, although there is no theoretical guarantee for this.
Similar curves for model 2 are provided in Fig. 2.
To illustrate how the sample-conditioned MSE may be

used to assess the accuracy of a risk estimate, suppose
that we have observed a sample, trained a classifier, and
obtained the BRE and the MSE of the BRE. For this fixed
sample, but random parameters in the Bayesian model,
the true risk has a mean equal to the BRE and a vari-
ance equal to the sample-conditioned MSE so that the
random variable Z = (̂R − R)/RMS(̂R|S) must have
zero mean and unit variance. This holds for any clas-
sification rule. In Fig. 3, we present quantile-quantile
(Q-Q) plots of the sample quantiles of Z versus theoretical
quantiles from a standard normal distribution. Figure 3a
provides Q-Q plots with realizations of Z taken under
OBRC classification and BRE risk estimation in model 1
with various sample sizes, along with a 45° reference line,
and Fig. 3b provides similar graphs for model 2. Observe
that Z appears approximately standard normal, particu-
larly under large sample sizes. Under smaller samples, Z
appears more positively skewed but has approximately
zero mean and unit variance. Q-Q plots for other classi-
fiers are similar.
In Figs. 4 and 5, we provide examples of decision bound-

aries for models 3 and 4, respectively, which focus on
the effect of multiple classes in two dimensions. Under
model 3, where we assume independent covariances, the
decision boundaries of OBRC are most similar to QDA,
although they are in general of a polynomial order. Under
model 4, where we assume homoscedastic covariances,
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Fig. 1Mean risks and RMS for model 1, three classification rules (LDA, QDA, and OBRC), and all risk estimators. aMean risk under LDA; b RMS risk
under LDA; cmean risk under QDA; d RMS risk under QDA; emean risk under OBRC; f RMS risk under OBRC

OBRC is most similar to LDA, although the decision
boundaries are not necessarily linear.
In Fig. 6, we present the mean and standard deviation

of the true risk with respect to all sample realizations as a
function of sample size for models 3 and 4. OBRC outper-
forms all other classification rules with respect to mean
risk, as it must, since the OBRC is defined to minimize
mean risk. Although there is no guarantee that OBRC
should minimize risk variance, in these examples, the risk
variance is lower than in all other classification rules. The
performance gain is particularly significant for small sam-
ples. Consider Figs. 6a and 6b, where we observe that, at
a sample size of 10, the risk of OBRC has a mean of about
0.16 and standard deviation of about 0.065, whereas the
risk of the next best classifier, RBF-SVM, has a mean of
about 0.22 and standard deviation of about 0.09.

Figure 7 provides the performance of risk estimators
under OBRC classification in models 5 and 6, demon-
strating performance in 20 dimensions with independent
scaled identity covariance priors. Settings in model 5 are
designed to produce a low mean risk and model 6 a high
mean risk. Graphs in the left column present the mean
true risk, averaged over all 10,000 sample realizations;
the center column presents empirical and Bayesian RMS
curves; and the right column presents Q-Q plots of Z. As
in Figs. 1 and 2, the BRE appears unbiased, the empirical
and Bayesian RMS curves are aligned, and the RMS curves
are optimal. From the Q-Q plots, the distribution of Z
appears to be skinny-tailed even under large n, although it
is approximately zero mean and unit variance.
In Fig. 8, we present the mean and standard deviation of

the true risk of all classifiers as a function of sample size
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Fig. 2Mean risks and RMS for model 2, three classification rules (LDA, QDA, and OBRC), and all risk estimators. aMean risk under LDA; b RMS risk
under LDA; cmean risk under QDA; d RMS risk under QDA; emean risk under OBRC; f RMS risk under OBRC

formodels 7 and 8, wheremodel 7 is designed to produce a
low mean risk and model 8 a high mean risk. OBRC again
outperforms all other classification rules with respect to
mean risk, as it should. There is no guarantee that OBRC
should minimize risk variance, and although risk variance

is lowest for OBRC in Fig. 8b, in Fig. 8d it is actually high-
est. Performance gain is particularly significant for small
samples.
In Figs. 9 and 10, we evaluate the performance of risk

estimators and classifiers under the breast cancer dataset
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Fig. 3 Q-Q plots of Z under OBRC and BRE. aModel 1; bmodel 2
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Fig. 4 Example decision boundaries for model 3 with multi-class classification. a LDA; b QDA; c OBRC; d L-SVM; e RBF-SVM

for D = 2 and D = 5, respectively. Graphs in the left
column present the mean true risk and mean risk esti-
mates, graphs in the center column present the empirical
RMS of all risk estimates and the Bayesian RMS for the
BRE, and graphs in the right column present the Q-Q
plots of Z for various sample sizes. LDA, QDA, and OBRC
are presented in the top, center, and bottom rows, respec-
tively. Although the BRE is theoretically unbiased and
minimizes RMS when averaged across random distribu-
tions in the uncertainty class, when applied to a specific
dataset or distribution, we now observe a bias (in the left
column) and a discrepancy between the empirical and
Bayesian RMS (in the center column). In particular, for all
classifiers under D = 2 and for LDA under D = 5, we
observe a high bias, for QDA and OBRC under D = 5, we
observe a low bias, and in all cases, the Bayesian RMS lies
below the empirical RMS. That being said, the empirical
RMS still outperforms that of distribution-free resam-
pling error estimators (LOO, CV, and boot). Although

resampling estimators are nearly unbiased, they suffer
from such large variance under small samples that the
BRE, despite imperfections in the Gaussianity assump-
tion and prior construction method, may still outperform
in practice thanks to optimization. Turning to classi-
fier performance, in these simulations, LDA appears to
outperform QDA and OBRC with independent arbitrary
covariances. Keep in mind that Bayesian methods are not
guaranteed to be optimal in all datasets and all settings
but, rather, are only optimal within the assumed model.
In fact, OBRC with homoscedastic arbitrary covariances
(not shown in the figures) performs as well as, or sig-
nificantly better than, LDA, suggesting that covariances
in this problem are approximately homoscedastic. From
the Q-Q plots, Z deviates from the reference standard
normal CDF, with a clear shift in the mean and some-
times variance. For instance, under the LDA classification
with D = 2 and n = 70 (corresponding to Fig. 9c), the
mean of Z is 0.76 and the standard deviation is 1.08, and
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Fig. 5 Example decision boundaries for model 4 with multi-class classification. a LDA; b QDA; c OBRC; d L-SVM; e RBF-SVM

under the OBRC classification with D = 5 and n = 70
(corresponding to Fig. 10i), the mean of Z is−1.08 and the
standard deviation is 1.49.
In Fig. 11, we present the mean of the true risk with

respect to random samples from the TCGA dataset, as
a function of sample size, for different feature selection
methods and selected feature set sizes. Due to covariance
estimation problems, QDA cannot be trained for D = 20
in this range of sample sizes. OBRC with calibrated priors
consistently outperforms under small samples and per-
forms robustly under large samples. These results depend
on the particular features selected and note LDAmay have
an advantage under FS-2, which minimizes the apparent
error of LDA classifiers.
In real applications, data rarely satisfy modeling

assumptions, for instance, Gaussianity, and there may be a
concern that performance will suffer. Firstly, keep in mind
the need to validate assumptions in the Bayesian model.
For example, Gaussianity tests and homoscedasticity tests

may be used to validate these underlying assumptions.
Our real-data simulations demonstrate a few examples
of how Gaussianity tests may be used in conjunction
with Bayesian methods. Secondly, previous works have
shown that Bayesianmethods are relatively robust to devi-
ations from a Gaussianity assumption [10, 14]. This is
observed, for instance, in Figs. 9 and 10. Thirdly, inference
from non-informative priors may serve as a reference.
The OBRC under non-informative priors and an arbi-
trary homoscedastic covariance model behaves similarly
to LDA and under an arbitrary independent covariance
model behaves similarly to QDA [13, 14]. Thus, the OBRC
can be seen as unifying and optimizing these classifiers.
This applies in Fig. 11, where OBRC with an appropri-
ate covariance model and non-informative prior performs
indistinguishably from LDA. The conditional MSE is also
an immensely useful tool to quantify the accuracy of a
risk estimator. For instance, one may employ the MSE for
censored sampling by collecting batches of sample points
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Fig. 6 True risk statistics for models 3 and 4 and five classification rules (LDA, QDA, OBRC, L-SVM, and RBF-SVM). aModel 3, mean; bmodel 3,
standard deviation; cmodel 4, mean; dmodel 4, standard deviation

until the sample-conditioned MSE reaches an acceptable
level, and either an acceptable risk has been achieved or
it has been determined that an acceptable risk cannot be
achieved. Lastly, although we provide analytic solutions
under discrete and Gaussian models, the basic theory

for this work does not require these assumptions. For
instance, recent work in [30] develops a Bayesian Poisson
model for RNA-Seq data, where Bayesian error estima-
tors and optimal Bayesian classifiers are obtained using
Markov chain Monte Carlo (MCMC) techniques.
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Fig. 7Mean risks, RMS, and Q-Q plots of Z for models 5 and 6, OBRC classification, and all risk estimators. aMean risk under model 5; b RMS risk
under model 5; c Q-Q plots of Z under model 5; dmean risk under model 6; e RMS risk under model 6; f Q-Q plots of Z under model 6
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Fig. 8 True risk statistics for models 7 and 8 and five classification rules (LDA, QDA, OBRC, L-SVM, and RBF-SVM). aModel 7, mean; bmodel 7,
standard deviation; cmodel 8, mean; dmodel 8, standard deviation

6 Conclusion
We have extended optimal Bayesian classification theory
to multiple classes and arbitrary loss functions, giving rise
to Bayesian risk estimators, the sample-conditioned MSE
for arbitrary risk estimators, and optimal Bayesian risk
classifiers. We have developed a new interpretation of the
conditional MSE based on effective joint densities, which
is useful in developing analytic forms and approximations
for the conditional MSE. We also provide new analytic
solutions for the conditional MSE under homoscedastic
covariance models. Simulations based on several syn-
thetic Gaussian models and two real microarray datasets
also demonstrate good performance relative to existing
methods.

Appendix 1: Discrete models
Consider a discrete sample space, X = {1, 2, . . . , b}.
Let pyx be the probability that a point from class y is
observed in bin x ∈ X , and let Uy

x be the number of
sample points observed from class y in bin x. Note ny =∑b

x=1U
y
x . The discrete Bayesian model defines 	y =

[Py1, . . . ,P
y
b], with parameter space Ty = �b−1. For each

y, we define Dirichlet priors on 	y with hyperparameters
αy = {αy

1, . . . ,α
y
b}:

π(θy) ∝
b∏

x=1
(pyx)α

y
x−1.

Assume that	y aremutually independent. Uniform pri-
ors are achieved when α

y
x = 1 for all x and y. Given data,

the posteriors are again Dirichlet with updated hyperpa-
rameters, α

y∗
x = α

y
x + Uy

x for all x and y. For proper
posteriors, α

y∗
x must all be positive for all x and y. The

effective density is thus given by:

f (x | y, S) = E[Pyx | S]= α
y∗
x

α
y∗
+
, (31)

where α
y∗
+ =∑b

x=1 α
y∗
x . Thus, we have

ε̂i,y (ψ , S) =
b∑

x=1

α
y∗
x

α
y∗
+
Iψ(x)=i.

The effective joint density, f (x,w | y, z, S), for y = z, can
be found from properties of Dirichlet distributions. We
have for any y ∈ {0, . . . ,M − 1} and x,w ∈ X ,

f (x,w | y, y, S) = E
[
PyxP

y
w | S] = α

y∗
x (α

y∗
w + δxw)

α
y∗
+
(
α
y∗
+ + 1

) ,

where δxw equals 1 if x = w and 0 otherwise. From (28),

E
[
εi,y(	y)ε

j,y(	y) | S]
=

b∑
x=1

b∑
w=1

α
y∗
x
(
α
y∗
w + δxw

)
α
y∗
+ (α

y∗
+ + 1)

Iψ(x)=iIψ(w)=j

= ε̂i,y(ψ , S)
(
α
y∗
+ ε̂j,y(ψ , S) + δij

)
α
y∗
+ + 1

. (32)
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Fig. 9Mean risks, RMS, and Q–Q plots of Z for the breast cancer dataset, D = 2, three classification rules (LDA, QDA, and OBRC), and all risk
estimators. aMean risk under LDA; b RMS risk under LDA; c Q–Q plots of Z under LDA; dmean risk under QDA; e RMS risk under QDA; f Q–Q plots of
Z under QDA; gmean risk under OBRC; h RMS risk under OBRC; i Q–Q plots of Z under OBRC

When y �= z, E
[
ε
i,y
n (	y)ε

j,z
n (	y) | S

]
may be found

from (25).

Appendix 2: Gaussianmodels
Suppose X is a D dimensional space in which each point
is represented by a column vector and each class-y con-
ditional distribution is Gaussian with mean vector μy
and covariance matrix �y. We will consider indepen-
dent covariance models, where the �y are mutually inde-
pendent prior to observing the data, and homoscedastic
covariance models, where �y are identical for all y [13].
We will also consider three structures for the covariance:
known, scaled identity, and arbitrary. Throughout, we use
μy and �y to denote both random quantities and their
realizations, and we use �y � 0 to denote a valid covari-
ance matrix, i.e., a symmetric, positive definite matrix.
Throughout, we will find analytic forms for the BRE and

conditional MSE under binary linear classifiers, ψ , of the
form

ψ(x) =
{
0 if g(x) ≤ 0,
1 otherwise, (33)

where g(x) = aTx + b for some vector a and scalar b, and
a superscript T denotes matrix transpose.

Known covariance
Assume that �y � 0 is known so that 	y = μy with
parameter space Ty = R

D. We assume the μys are mutu-
ally independent and use the following prior:

π(μy) ∝ ∣∣�y
∣∣− 1

2 exp
(
−νy

2
(
μy − my

)T
�−1

y
(
μy − my

))
,

(34)
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Fig. 10Mean risks, RMS and Q–Q plots of Z for the breast cancer dataset, D = 5, three classification rules (LDA, QDA, and OBRC), and all risk
estimators. aMean risk under LDA; b RMS risk under LDA; c Q-Q plots of Z under LDA; dmean risk under QDA; e RMS risk under QDA; f Q–Q plots of
Z under QDA; gmean risk under OBRC; h RMS risk under OBRC; i Q–Q plots of Z under OBRC

with hyperparameters νy ∈ R and my ∈ R
D, where |·|

denotes a determinant. When νy > 0, this is a Gaussian
distribution with mean my and covariance �y/νy. Under
this model, the posterior is of the same form as the prior,
with updated hyperparameters

ν∗
y = νy + ny,

m∗
y = my + ny

μ̂y − my
νy + ny

, (35)

where μ̂y is the usual sample mean of training points in
class y. We require ν∗

y > 0 for a proper posterior.
The effective density was shown in [13] to be the follow-

ing Gaussian distribution:

f (x | y, S) ∼ N
(
m∗

y ,
ν∗
y + 1
ν∗
y

�y

)
. (36)

To find the BRE for a linear classifier, let P = (−1)ig(X).
From the effective density,

f (p | y, S) ∼ N
(

(−1)ig(m∗
y),

ν∗
y + 1
ν∗
y

aT�ya
)
. (37)

Thus,

ε̂i,y(ψ , S) = P((−1)ig(X) ≤ 0 | y, S)
= P(P ≤ 0 | y, S)

= �

⎛⎜⎝− (−1)ig(m∗
y)√

aT�ya

√
ν∗
y

ν∗
y + 1

⎞⎟⎠ , (38)

where �(x) is the standard normal CDF. This result was
also found in [10].
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Fig. 11 True risk mean for the TCGA dataset and five classification rules (LDA, QDA, OBRC, L-SVM, and RBF-SVM). a FS-1, D = 2; b FS-2, D = 2; c FS-1,
D = 5; d FS-2, D = 5; e FS-1, D = 20; f FS-2, D = 20

To find the MSE under linear classification, note
f (w | x, y, z, S) is of the same form as f (x | y, S) with poste-
rior hyperparameters updated with {x, y} as a new sample
point. Hence, for y = z,

f (w | x, y, y, S) ∼ N
(
m∗

y + x − m∗
y

ν∗
y + 1

,
ν∗
y + 2

ν∗
y + 1

�y

)
, (39)

and the effective joint density is thus given by

f (x,w | y, y, S) ∼ N

⎛⎝[m∗
y

m∗
y

]
,

⎡⎣ ν∗
y +1
ν∗
y

�y
1
ν∗
y
�y

1
ν∗
y
�y

ν∗
y +1
ν∗
y

�y

⎤⎦⎞⎠ .

(40)

Now let Q = (−1)jg(W). Since X and W are governed
by the effective joint density in (40):

f (p, q | y, y, S) ∼

N

⎛⎝[ (−1)ig(m∗
y)

(−1)jg(m∗
y)

]
,

⎡⎣ ν∗
y +1
ν∗
y

aT�ya (−1)i+j

ν∗
y

aT�ya
(−1)i+j

ν∗
y

aT�ya
ν∗
y +1
ν∗
y

aT�ya

⎤⎦⎞⎠ .

Hence, from (29), we have

E
[
εi,y(ψ ,	y)ε

j,y(ψ ,	y) | S] = P(P ≤ 0 ∩ Q ≤ 0 | y, S)

= �

⎛⎜⎝− (−1)ig(m∗
y )√

aT�ya

√
ν∗
y

ν∗
y + 1

,

− (−1)jg(m∗
y )√

aT�ya

√
ν∗
y

ν∗
y + 1

,
(−1)i+j

ν∗
y + 1

⎞⎟⎠ ,
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where �(x, y, ρ) is the joint CDF of two standard nor-
mal random variables with correlation ρ. When y �= z,
E
[
εi,y(ψ ,	y)εj,z(ψ ,	z) | S] is found from (25).

Homoscedastic arbitrary covariance
Assume 	y =[μy,�], where the parameter space of μy is
R
D and the parameter space of � consists of all symmet-

ric positive definite matrices. Further, assume a conjugate
prior in which the μys are mutually independent given �

so that

π(θ) =
⎛⎝M−1∏

y=0
π(μy | �)

⎞⎠π(�), (41)

where π(μy | �) is as in (34) with hyperparameters νy ∈ R

andmy ∈ R
D, and

π(�) ∝ |�|− κ+D+1
2 exp

(
−1
2
trace

(
S�−1)) , (42)

with hyperparameters κ ∈ R and S, a symmetric D × D
matrix. If νy > 0, then π(μy | �) is Gaussian with mean
my and covariance �/νy. If κ > D − 1 and S � 0, then
π(�) is an inverse-Wishart distribution with hyperparam-
eters κ and S. If in addition κ > D + 1, the mean of �

exists and is given by E[�]= S/(κ −D−1); thus, S deter-
mines the shape of the expected covariance. The posterior
is of the same form as the prior with the same updated
hyperparameters given by (35) and

κ∗ = κ + n,

S∗ = S +
M−1∑
y=0

(ny − 1)�̂y + νyny
νy+ny (μ̂y − my)(μ̂y − my)T ,

(43)

where �̂y is the usual sample covariance of training points
in class y (�̂y = 0 if ny ≤ 1). The posteriors are proper if
ν∗
y > 0, κ∗ > D − 1 and S∗ � 0.
The effective density for class y is multivariate student t

with k = κ∗ − D + 1 degrees of freedom, location vector
m∗

y , and scale matrix ν∗
y +1
kν∗

y
S∗ [13]. In other words,

f (x | y, S) ∼ t
(
k,m∗

y ,
ν∗
y + 1
kν∗

y
S∗
)
. (44)

To find the BRE under a binary linear classifier of the
form (33), let P = (−1)ig(X). Since P is an affine transfor-
mation of a multivariate student t random variable, it has
a non-standardized student t distribution [31]:

f (p | y, S) ∼ t
(
k,miy,

ν∗
y + 1
kν∗

y
γ 2
)
, (45)

where miy = (−1)ig(m∗
y) and γ 2 = aTS∗a. The CDF of a

non-standardized student t distribution with d degrees of

freedom, location parameter m, and scale parameter s2 is
well known, and at zero, it is given by [32],

1
2

− sgn(m)

2
I
(

m2

m2 + ds2
;
1
2
,
d
2

)
,

where I(x; a, b) is an incomplete regularized beta function.
Hence,

ε̂i,y(ψ , S) = 1
2

− sgn(miy)

2
I

⎛⎜⎝ m2
iy

m2
iy + ν∗

y +1
ν∗
y

γ 2
;
1
2
,
k
2

⎞⎟⎠ .

(46)
This result was also found in [10].
The effective conditional density for y = z is solved by

updating all of the hyperparameters associated with class
y with the new sample point, {x, y}, resulting in:

f (w | x, y, y, S) ∼ t
(
k + 1,m∗

y + x − m∗
y

ν∗
y + 1

,

ν∗
y + 2

(k + 1)(ν∗
y + 1)

(
S∗ + Sy(x)

))
, (47)

where

Sy(x) = ν∗
y

ν∗
y + 1

(x − m∗
y)(x − m∗

y)
T . (48)

For y �= z, f (w | x, y, z, S) is of the same form as the effec-
tive density with only hyperparameters associated with
the covariance, κ∗ and S∗, updated:

f (w | x, y, z, S) ∼ t
(
k + 1,m∗

z ,
ν∗
z + 1

(k + 1)ν∗
z

(
S∗ + Sy(x)

))
. (49)

To find the conditional MSE of the BRE, let Q =
(−1)jg(W). For y = z,

f (q | x, y, y, S) ∼ t
(
k + 1,miy + p − miy

ν∗
y + 1

,

ν∗
y + 2

(k + 1)(ν∗
y + 1)

(
γ 2 + ν∗

y
ν∗
y + 1

(
p − miy

)2)) , (50)

where we have used the fact that (−1)iaT (x − m∗
y) = p −

my. When y �= z,

f (q | x, y, z, S) ∼ t
(
k + 1,mjz,

ν∗
z + 1

(k + 1)ν∗
z

(
γ 2 + ν∗

y
ν∗
y + 1

(
p − miy

)2)) .

Since dependency on X has been reduced to depen-
dency on only P in both of the above distributions, we
may write f (q | x, y, z, S) = f (q | p, y, z, S) for all y and
z. Lemma 1 in Appendix 3 produces an effective joint
density given an effective density and an effective con-
ditional density of a specified form. The distributions
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f (p | y, S) and f (q | p, y, y, S) are precisely in the form
required by this lemma with D = 1. Hence, [P,Q]T
follows a bivariate student t distribution when y = z,

f (p, q | y, y, S) ∼ t

⎛⎝k, [miy
miy

]
,
γ 2

k

⎡⎣ ν∗
y +1
ν∗
y

(−1)i+j

ν∗
y

(−1)i+j

ν∗
y

ν∗
y +1
ν∗
y

⎤⎦⎞⎠ ,

(51)

and when y �= z,

f (p, q | y, z, S) ∼ t

⎛⎝k, [miy
mjz

]
,
γ 2

k

⎡⎣ ν∗
y +1
ν∗
y

0

0 ν∗
z +1
ν∗
z

⎤⎦⎞⎠ .

Thus, E
[
εi,y(	y)εj,y(	y) | S] can be found from (29). In

particular, when y = z,

E
[
εi,y(	y)ε

j,y(	y) | S] = P(P ≤ 0 ∩ Q ≤ 0 | y, y, S)
= T

(
−miy

γ

√
kν∗

y
ν∗
y +1 ,−

mjy
γ√

kν∗
y

ν∗
y +1 ,

(−1)i+j

ν∗
y +1 , k

)
, (52)

and when y �= z,

E
[
εi,y(	y)ε

j,z(	z) | S] = P(P ≤ 0 ∩ Q ≤ 0 | y, z, S)
= T

(
−miy

γ

√
kν∗

y
ν∗
y +1 ,−

mjz
γ√

kν∗
z

ν∗
z +1 , 0, k

)
, (53)

where T(x, y, ρ, d) is the joint CDF of two standard multi-
variate student t random variables with correlation ρ and
d degrees of freedom.

Independent arbitrary covariance
Assume 	 =[μy,�y], where the parameter space of μy is
R
D and the parameter space of �y consists of all symmet-

ric positive definite matrices. The independent arbitrary
covariance model assumes a conjugate prior with inde-
pendent 	ys and

π(θy) = π(μy | �y)π(�y), (54)

where π(μy | �y) is of the same form as in (34) with hyper-
parameters νy ∈ R andmy ∈ R

D, and π(�y) is of the same
form as in (42) with hyperparameters κy ∈ R and Sy, a
symmetricD×Dmatrix. The posterior is of the same form
as the prior with updated hyperparameters given by (35)
and

κ∗
y = κy + ny,

S∗
y = Sy + (ny − 1)�̂y + νyny

νy+ny (μ̂y − my)(μ̂y − my)T .
(55)

The posteriors are proper if ν∗
y > 0, κ∗

y > D − 1 and
S∗
y � 0.

The effective density for class y is multivariate student
t as in (44) with ky = κ∗

y − D + 1 and S∗
y in place

of k and S∗, respectively [13]. Further, (45) also holds
with miy = (−1)ig(m∗

y) and with ky and γ 2
y = aTS∗

ya
in place of k and γ 2, respectively. Under binary linear
classification, ε̂i,y(ψ , S) is given by (46) with ky and γ 2

y
in place of k and γ 2. The same result was found in
[10]. E

[
εi,y(	y)εj,y(	y) | S] is solved similarly to before,

resulting in (47), (50), (51), and ultimately (52), with
ky, S∗

y and γ 2
y in place of k, S∗, and γ 2, respectively.

E
[
εi,y(	y)εj,z(	z) | S] for y �= z is found from (25).

Homoscedastic scaled identity covariance
In the homoscedastic scaled identity covariance model,
�y is assumed to have a scaled identity structure, i.e.,
	y =[μy, σ 2] where �y = σ 2ID and ID is a D × D iden-
tity matrix. The parameter space of μy is R

D for all y
and of σ 2 is (0,∞). We also assume the μys are mutually
independent given σ 2:

π(θ) =
⎛⎝M−1∏

y=0
π(μy | σ 2)

⎞⎠π(σ 2), (56)

where π(μy | σ 2) is of the same form as (34) with hyper-
parameters νy andmy, and

π(σ 2) ∝ ∣∣σ 2∣∣− (κ+D+1)D
2 exp

(
− trace(S)

2σ 2

)
, (57)

with hyperparameters κ ∈ R and S, a symmetricD×D real
matrix. When νy > 0, π(μy | σ 2) is a univariate Gaussian
distribution with mean my and covariance �y/νy, and
when (κ + D + 1)D > 2 and S � 0, π(σ 2) is a univari-
ate inverse-Wishart distribution. If in addition (κ + D +
1)D > 4, then E[ σ 2]= trace(S)

(κ+D+1)D−4 . The form of (57) has
been designed so that the posterior is of the same form as
the prior with the same hyperparameter update equations
given in the arbitrary covariancemodels, (35) and (43).We
require ν∗

y > 0, (κ∗+D+1)D > 2, and S∗ � 0 for a proper
posterior.
The effective density for class y is multivariate student t

with k = (κ∗ + D + 1)D − 2 degrees of freedom [13]:

f (x | y, S) ∼ t
(
k,m∗

y ,
ν∗
y + 1
kν∗

y
trace(S∗)ID

)
. (58)

Let P = (−1)ig(X). Since P is an affine transformation
of a multivariate student t random variable, again it has
the same form as in (45) with k = (κ∗ + D + 1)D − 2,
miy = (−1)ig(m∗

y), and γ 2 = trace(S∗)aTa. Following the
same steps as in the homoscedastic arbitrary covariance
model, under binary linear classification, ε̂i,y(ψ , S) is given
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by (46) with the appropriate choice of k,miy, and γ 2. This
was found in [10].
The effective conditional density for y = z is solved by

updating all of the hyperparameters associated with class
y with the new sample point, {x, y}:

f (w | x, y, y, S) ∼ t
(
k + D,m∗

y + x − m∗
y

ν∗
y + 1

,

ν∗
y + 2

(k + D)(ν∗
y + 1)

trace(S∗ + Sy(x))ID
)
, (59)

where Sy(x) is given by (48). When y �= z, the effective
conditional density is found by updating only hyperpa-
rameters associated with the covariance, κ∗ and S∗, with
the point {x, y}. Thus,

f (w | x, y, z, S) ∼ t
(
k + D,m∗

z ,

ν∗
z + 1

(k + D)ν∗
z
trace(S∗ + Sy(x))ID

)
. (60)

Lemma 1 in Appendix 3 is used to find an effective joint
density. When y = z,

f (x,w | y, y, S)

∼ t

⎛⎝k, [m∗
y

m∗
y

]
,
trace(S∗)

k

⎡⎣ ν∗
y +1
ν∗
y

ID 1
ν∗
y
ID

1
ν∗
y
ID

ν∗
y +1
ν∗
y

ID

⎤⎦⎞⎠ ,

(61)
and when y �= z,

f (x,w | y, z, S)

∼ t

⎛⎝k, [m∗
y

m∗
z

]
,
trace(S∗)

k

⎡⎣ ν∗
y +1
ν∗
y

ID 0D
0D

ν∗
z +1
ν∗
z

ID

⎤⎦⎞⎠ .

(62)

E
[
εi,y(	y)εj,z(	y) | S] can be found from (29) by defin-

ing P = (−1)ig(X) and Q = (−1)jg(W). Following
the same steps as in the homoscedastic arbitrary covari-
ance model, one can show that E

[
εi,y(	y)εj,z(	y) | S]

is equivalent to (52) when y = z and (53) when
y �= z, where we plug in appropriate values for k, miy
and γ 2.

Independent scaled identity covariance
Now assume that �y has a scaled identity structure, i.e.,
	y =[μy, σ 2

y ] where �y = σ 2
y ID, and that the parameter

space of μy isRD and of σ 2
y is (0,∞) for all y. Also, assume

the 	ys are mutually independent, with

π(θy) = π(μy | σ 2
y )π(σ 2

y ), (63)

where π(μy | σ 2
y ) is of the same form as in (34) with hyper-

parameters νy ∈ R and my ∈ R
D, and π(σ 2

y ) is of
the same form as in (57) with hyperparameters κy ∈ R

and Sy, a symmetric D × D real matrix. The posterior
is of the same form as the prior with the same hyper-
parameter update equations in (35) and (55). We require
ν∗
y > 0, (κ∗

y + D + 1)D > 2 and S∗
y � 0 for a proper

posterior.
The effective density for class y is multivariate student

t, as in (58) with ky = (κ∗
y +D+ 1)D− 2 and S∗

y in place of
k and S∗, respectively [13]. Under binary linear classifica-
tion, ε̂i,y(ψ , S) is given by (46) withmiy = (−1)ig(m∗

y) and
with ky and γ 2

y = trace(S∗
y)aTa in place of k and γ 2. The

effective joint density, f (x,w | y, y, S), is solved as before,
resulting in (59) and (61) with ky and S∗

y in place of k and
S∗, respectively. Further, E

[
εi,y(	y)εj,y(	y) | S] is solved

from (51) resulting in (52), with ky and γ 2
y in place of k and

γ 2, respectively. E
[
εi,y(	y)εj,z(	z) | S] for y �= z is found

from (25).

Appendix 3: Effective joint density lemma
The lemma below is used to derive the effective joint
density of Gaussian models in Appendix 2.

Lemma 1. Suppose X is multivariate student t given by,

f (x) ∼ t
(
k,m∗

y ,
ν∗
y + 1
kν∗

y
γ 2ID

)
.

Further, supposeW conditioned onX = x is multivariate
student t given by,

f (w | x) ∼ t
(
k + D,m∗

z + I
x − m∗

y
ν∗
y + 1

,

1
k + D

J
(

γ 2 + ν∗
y

ν∗
y + 1

(x − m∗
y)

T (x − m∗
y)

)
ID

)
,

where either I = 0 and J = ν∗
z +1
ν∗
z

, or I = 1 and J = ν∗
y +2

ν∗
y +1 .

Then, the joint density is multivariate student t:

f (x,w) ∼ t

⎛⎝k, [m∗
y

m∗
z

]
,
γ 2

k

⎡⎣ ν∗
y +1
ν∗
y

ID I 1
ν∗
y
ID

I 1
ν∗
y
ID KID

⎤⎦⎞⎠ ,

where K = ν∗
z +1
ν∗
z

when I = 0 and K = ν∗
y +1
ν∗
y

when I = 1.
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Proof. After some simplification, one can show

f (x,w) =f (x)f (w | x)

∝
(
1+ ν∗

y
ν∗
y + 1

(x−m∗
y)

T (γ 2ID)−1(x − m∗
y)

)
− k+D

2

×
∣∣∣∣∣γ 2ID + ν∗

y
ν∗
y + 1

(x − m∗
y)

T (x − m∗
y)ID

∣∣∣∣∣
k+2D−1

2

×
∣∣∣∣∣γ 2ID + ν∗

y
ν∗
y + 1

(x − m∗
y)

T (x − m∗
y)ID

+ 1
J

(
w − m∗

z − I
x − m∗

y
ν∗
y + 1

)

×
(
w − m∗

z − I
x − m∗

y
ν∗
y + 1

)T
∣∣∣∣∣∣
− k+2D

2

.

Simplifying further, we obtain

f (x,w) ∝
(

γ 2 + ν∗
y

ν∗
y + 1

(x − m∗
y)

T (x − m∗
y)

+ 1
J

(
w − m∗

z − I
x − m∗

y
ν∗
y + 1

)T

×
(
w − m∗

z − I
x − m∗

y
ν∗
y + 1

))− k+2D
2

.

If I = 0, then it can be shown that

f (x,w) ∝
(
1 +

[
x − m∗

y
w − m∗

z

]T
�−1

[
x − m∗

y
w − m∗

z

])− k+2D
2

,

where

� =
⎡⎣ ν∗

y +1
ν∗
y

γ 2ID 0D
0D

ν∗
z +1
ν∗
z

γ 2ID

⎤⎦ .

Similarly, if I = 1, it can be shown that

f (x,w) ∝
(
1 +

[
x − m∗

y
w − m∗

z

]T
�−1

[
x − m∗

y
w − m∗

z

])− k+2D
2

,

where

� =
⎡⎣ ν∗

y +1
ν∗
y

γ 2ID 1
ν∗
y
γ 2ID

1
ν∗
y
γ 2ID

ν∗
y +1
ν∗
y

γ 2ID

⎤⎦ ,

which completes the proof.
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