41 research outputs found

    Platelet derived growth factor inhibitors: A potential therapeutic approach for ocular neovascularization.

    Get PDF
    Retinochoroidal vascular diseases are the leading causes of blindness in the developed world. They include diabetic retinopathy (DR), retinal vein occlusion, retinopathy of prematurity, age-related macular degeneration (AMD), and pathological myopia, among many others. Several different therapies are currently under consideration for the aforementioned disorders. In the following section, agents targeting platelet-derived growth factor (PDGF) are discussed as a potential therapeutic option for retinochoroidal vascular diseases. PDGF plays an important role in the angiogenesis cascade that is activated in retinochoroidal vascular diseases. The mechanism of action, side effects, efficacy, and the potential synergistic role of these agents in combination with other treatment options is discussed. The future of treatment of retinochoroidal vascular diseases, particularly AMD, has become more exciting due to agents such as PDGF antagonists

    Endogenous endophthalmitis: diagnosis, management, and prognosis.

    Get PDF
    Endogenous endophthalmitis is an ophthalmic emergency that can have severe sight-threatening complications. It is often a diagnostic challenge because it can manifest at any age and is associated with a number of underlying predisposing factors. Microorganisms associated with this condition vary along a broad spectrum. Depending upon the severity of the disease, both medical and surgical interventions may be employed. Due to rarity of the disease, there are no guidelines in literature for optimal management of these patients. In this review, treatment guidelines based on clinical data and microorganism profile have been proposed

    Human Wharton's Jelly Stem Cell (hWJSC) Extracts Inhibit Ovarian Cancer Cell Lines OVCAR3 and SKOV3 in vitro by Inducing Cell Cycle Arrest and Apoptosis

    Get PDF
    Ovarian cancer is a highly lethal and the second highest in mortality among gynecological cancers. Stem cells either naïve or engineered are reported to inhibit various human cancers in both in-vitro and in-vivo. Herein we report the cancer inhibitory properties of human Wharton's jelly stem cell (hWJSC) extracts, namely its conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against two ovarian cancer cell lines (OVCAR3 and SKOV3) in-vitro. Cell metabolic activity assay of OVCAR3 and SKOV3 cells treated with hWJSC-CM (12.5, 25, 50, 75, 100%) and hWJSC-CL (5, 10, 15, 30, and 50 μg/ml) demonstrated concentration dependent inhibition at 24–72 h. Morphological analysis of OVCAR3 and SKOV3 cells treated with hWJSC-CM (50, 75, 100%) and hWJSC-CL (15, 30, and 50 μg/ml) for 24–72 h showed cell shrinkage, membrane damage/blebbings and cell death. Cell cycle assay demonstrated an increase in the sub-G1 and G2M phases of cell cycle following treatment with hWJSC-CM (50, 75, 100%) and hWJSC-CL (10, 15, and 30 μg/ml) at 48 h. Both OVCAR3 and SKOV3 cells demonstrated mild positive expression of activated caspase 3 following treatment with hWJSC-CM (50%) and hWJSC-CL (15 μg/ml) for 24 h. Cell migration of OVCAR3 and SKOV3 cells were inhibited following treatment with hWJSC-CM (50%) and hWJSC-CL (15 μg/ml) for 48 h. Tumor spheres (TS) of OVCAR3 and SKOV3 treated with hWJSC-CM (50, 75, 100%) and hWJSC-CL (10, 15, 30 μg/ml) for 48 h showed altered surface changes including vacuolations and reduction in size of TS. TS of OVCAR3 and SKOV3 also showed the presence of few ovarian cancer stem cells (CSCs) in minimal numbers following treatment with hWJSC-CM (50%) or hWJSC-CL (15 μg/ml) for 48 h. Real-time gene expression analysis of OVCAR3 and SKOV3 treated with hWJSC-CM (50%) or hWJSC-CL (15 μg/ml) for 48 h demonstrated decreased expression of cell cycle regulatory genes (cyclin A2, Cyclin E1), prostaglandin receptor signaling genes (EP2, EP4) and the pro-inflmmatory genes (IL-6, TNF-α) compared to untreated controls. The results indicate that hWJSC-CM and hWJSC-CL inhibit ovarian cancer cells at mild to moderate levels by inducing cellular changes, cell cycle arrest, apoptosis, decreasing the expression of CSC markers and related genes regulation. Therefore, the stem cell factors in hWJSCs extracts can be useful in cancer management

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Fixed point results for generalized (ψ,ϕ)-weak contractions with an application to system of non-linear integral equations

    No full text
    The aim of this paper is to prove fixed point results under (ψ,ϕ)-weak contractive condition for continuous weak compatible mappings in ordered b-metric spaces. The results proved herein generalize, modify and unify some recent results of the existing literature. An application demonstrating the usability of our established results is also discussed besides furnishing an illustrative example. Keywords: Coincidence point, (ψ,ϕ)-weak contraction, Weak compatible mapping and ordered b-metric space

    Non-coding RNAs in cancer diagnosis and therapy

    No full text
    Cancer invasion involves a series of fundamental heterogeneous steps, with each step being distinct in its type regarding its dependence on various oncogenic pathways. Over the past few years, researchers have been focusing on targeted therapies to treat malignancies relying not only on a single oncogenic pathway, but on multiple pathways. Scientists have recently identified potential targets in the human genome considered earlier as non-functional but the discovery of their potential role in gene regulation has put new insights to cancer diagnosis, prognosis and therapeutics. Non coding RNAs (ncRNAs) have been identified as the key gene expression regulators. Long non-coding RNA (lncRNAs) reveal diverse gene expression profiles in benign and metastatic tumours. Improved clinical research may lead to better knowledge of their biogenesis and mechanism and eventually be used as diagnostic biomarkers and therapeutic agents. Small non coding RNAs or micro RNA (miRNA) are capable of reprogramming multiple oncogenic cascades and, thus, can be used as target agents. This review is aimed to give a perspective of non coding transcription in cancer metastasis with an eye on rising clinical relevance of non coding RNAs and their mechanism of action focusing on potential therapeutics for cancer pathogenesis. Keywords: Metastasis, Oncogene, microRNA, Oncomirs, Transcription, Genetic expressio

    Potentials of curcumin against polycystic ovary syndrome: Pharmacological insights and therapeutic promises

    No full text
    Polycystic ovary syndrome (PCOS) is a common hormonal disorder among women (4%–20%) when the ovaries create abnormally high levels of androgens, the male sex hormones that are typically present in women in trace amounts. The primary characteristics of PCOS include oxidative stress, inflammation, hyperglycemia, hyperlipidemia, hyperandrogenism, and insulin resistance. Generally, metformin, spironolactone, eflornithine and oral contraceptives are used to treat PCOS, despite their several side effects. Therefore, finding a potential candidate for treating PCOS is necessary. Curcumin is a major active natural polyphenolic compound derived from turmeric (Curcuma longa). A substantial number of studies have shown that curcumin has anti-inflammatory, anti-oxidative stress, antibacterial, and anti-apoptotic activities. In addition, curcumin reduces hyperglycemia, hyperlipidemia, hyperandrogenism, and insulin resistance in various conditions, including PCOS. The review highlighted the therapeutic aspects of curcumin against the pathophysiology of PCOS. We also offer a hypothesis to improve the development of medicines based on curcumin against PCOS
    corecore