224 research outputs found

    Multilayer Thin Films on Fine Particles

    Get PDF
    The tunable construction of multilayer thin-film-based particulate has opened up new horizons in materials science and led to exciting new developments in many scientific areas during the past two decades. Indeed, to utilize the synergistic properties of thin film coatings and the core particles, the thin film immobilized on fine particles can be a promising approach. The interaction between the thin films and the core fine particles results in adjustable properties of the coated particles. Therefore, such coated systems have been considered as an important class of emerging powder technology for a wide range of applications. Namely, multilayer structural features can lead to designing a highly active and selective catalytic systems. In addition, multilayer-coated nano/micro particles (NMPs) can be employed in the development of many new properties, ease of functionalization, conjugation of biomolecules, etc. Such structure with multilayer coatings can also revolutionize the energy storage and conversion systems

    Processing and structure-property relationships of natural rubber/wheat bran biocomposites

    Get PDF
    In this work, wheat bran was used as cellulosic filler in biocomposites based on natural rubber. The impact of wheat bran content [ranging from 10 to 50 parts per hundred rubber (phr)] on processing, structure, dynamic mechanical properties, thermal properties, physico-mechanical properties and morphology of resulting biocomposites was investigated. For better characterization of interfacial interactions between natural rubber and wheat bran, achieved results were compared with properties of biocomposites filled with commercially available cellulosic fillers—wood flour and microcellulose. It was observed that wheat bran, unlike commercial cellulosic fillers, contains high amount of proteins, which act like plasticizers having profitable impact on processing, physical, thermo-mechanical and morphological properties of biocomposites. This is due to better dispersion and distribution of wheat bran particles in natural rubber, which results in reduction of stiffness and porosity of the biocomposites. Regardless of cellulosic filler type, Wolff activity coefficient was positive for all studied biocomposites implying reinforcing effect of the applied fillers, while tensile strength and elongation at break decreased with increasing filler content. This phenomenon is related to restricted strain-induced crystallization of NR matrix due to limited mobility of polymer chains in the biocomposites. Furthermore, this explains negligible impact of particle size distribution, chemical composition and crystallinity degree of applied cellulosic filler on static mechanical properties of highly-filled NR biocomposites. The conducted investigations show that wheat bran presents interesting alternative for commercially available cellulosic fillers and could be successfully applied as a low-cost filler in polymer compositesPostprint (author's final draft

    Preparation and characterization of natural rubber composites highly filled with brewers' spent grain/ground tire rubber hybrid reinforcement

    Get PDF
    Brewers' spent grain (BSG) and ground tire rubber (GTR) were applied as low-cost hybrid reinforcement natural rubber (NR). The impact of BSG/GTR ratio (in range: 100/0, 75/25, 50/50, 25/75 and 0/100 phr) on processing and performance properties of highly filled natural rubber composites was evaluated by oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, swelling behavior, tensile tests and impedance tube measurements. It was found that increasing content of GTR in NR/BSG/GTR composites accelerate cross-linking reactions during their preparation, which resulted in decrease of scorch time and optimal cure time. Simultaneously, higher content of GTR filler in NR/BSG/GTR composites significantly improved their physico-mechanical, thermal, morphological and acoustical properties. This indicates better compatibility between natural rubber matrix and GTR than with BSG, which is related to correlation between two factors. First factor is obvious differences in particles size and polarity of GTR and BSG, which affected physical interactions into phase boundary between NR matrix and BSG/GTR hybrid reinforcement. Second factor is possible migration of unreacted curing additives and carbon black particles from GTR filler to NR matrix, which played a significant role on processing and final properties of NR/BSG/GTR compositesPostprint (author's final draft

    Investigating the impact of curing system on structure-property relationship of natural rubber modified with brewery by-product and ground tire rubber

    Get PDF
    The application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire rubber (GTR)/brewers’ spent grain (BSG) hybrid reinforcements, were prepared using two different curing systems: (i) sulfur-based and (ii) dicumyl peroxide (DCP). The influence of the amount of fillers (in 100/0, 50/50, and 0/100 ratios in parts per hundred of rubber) and type of curing system on the final properties of biocomposites was evaluated by the oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, swelling behavior, tensile testing, and impedance tube measurements. The results show, that the scorch time and the optimum curing time values of sulfur cured biocomposites are affected by the change of the hybrid filler ratio while using the DCP curing system, and the obtained values do not show significant variations. The results conclude that the biocomposites cured with sulfur have better physico-mechanical and acoustic absorption, and that the type of curing system does not influence their thermal stability. The overall analysis indicates that the difference in final properties of highly filled biocomposites cured with two different systems is mainly affected by the: (i) cross-linking efficiency, (ii) partial absorption and reactions between fillers and used additives, and (iii) affinity of additives to applied fillersPostprint (published version

    Heuristic Search Strategy for Transforming Microstructural Patterns to Optimal Copolymerization Recipes

    Get PDF
    Manipulation and optimization of copolymer microstructure for tailoring final properties is of great importance in macromolecular science and engineering. Uncovering the complexities of the interrelationships between copolymerization recipe and copolymer microstructure (a challenging field of study in its own right) is a multi-objective optimization problem, which has attracted a lot of attention in the last 10-15 years. In the present study, a powerful optimizer was developed based on the Non-dominated Sorting Genetic Algorithm (NSGA-II) for transforming desired microstructural copolymerization profiles, including molecular weight distribution (MWD) and chemical composition distribution (CCD), back to optimal copolymerization recipes and operating conditions. The optimizer developed has the beneficial features of robust machine learning and multi-objective optimization based upon heuristic search strategies. The metallocene-catalyzed ethylene/α-olefin copolymerization was selected as a sufficiently complex system to challenge the proposed optimization tool. The developed computer code was used to explore copolymerization recipes (polymerization temperature and concentrations of ethylene, 1­butene, cocatalyst, and hydrogen) needed to synthesize copolymers having desired microstructural features. Based on the results obtained, it is now possible to produce various grades or tailor-make the copolymer structure by suggesting the ‘best’ copolymerization recipe/conditions as reliably as possible

    Biomaterials recycling: a promising pathway to sustainability

    Get PDF
    Biomaterials undergo a transformative journey, from their origin as renewable resources to the manufacturing plants where they are processed and stored, until they fulfill their intended therapeutic or diagnostic purposes and become medical waste. However, during this life cycle, biomaterials can be susceptible to contamination and subsequent degradation through various mechanisms such as hydro-mechanical, thermal, or biochemical processes in water, soil, or air. These factors raise significant concerns regarding biological safety. Additional complexities arise from the potential amalgamation of biomaterials with other materials, either of the same kind or different types. Use of biomaterials influences their porosity, surface chemistry, and structural strength, and these factors affect biomaterials’ reusability. Given the multitude of materials, processing parameters, sustainability requirements, and the limitation of natural resources, the recycling of biomaterials becomes necessary. Unfortunately, this topic has received limited attention thus far. In this context, this perspective provides a brief overview, analysis, and classification of reports on biomaterials recycling, aiming to initiate a discussion on this frequently overlooked subject. We highlight the challenges related to energy consumption and environmental pollution. However, the lack of established protocols and reporting on biomaterials recycling prevents a comprehensive understanding of these challenges and potential solutions. Nevertheless, addressing these issues can lead to more efficient resource use and reduced environmental impact in the field of biomaterials

    Preliminary investigation on auto-thermal extrusion of ground tire rubber

    Get PDF
    Ground tire rubber (GTR) was processed using an auto-thermal extrusion as prerequisite to green reclaiming of GTR. The reclaimed GTR underwent a series of tests: thermogravimetric analysis combined with Fourier-transform infrared spectroscopy (TGA-FTIR), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and static headspace and gas chromatography-mass spectrometry (SHS-GC-MS) in order to evaluate the impact of barrel heating solution (with/without external barrel heating) on reclaiming process of GTR. Moreover, samples were cured to assess the impact of reclaiming heating solution on curing characteristics and physico-mechanical properties. Detailed analysis of the results indicated that the heat supplied by the machinery was replaced by energy generated due to the high shearing phenomenon, what significantly influenced energy consumption and hereby lowered processing costPostprint (published version

    Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    Get PDF
    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism

    Curing epoxy with ethylenediaminetetraacetic acid (EDTA) surface-functionalized CoxFe3- xO4 magnetic nanoparticles

    Get PDF
    In this work, the bulk and surface composition of Fe3O4 supermagnetic nanoparticles were modified for efficient epoxy curing. The bare, ethylenediaminetetraacetic acid (EDTA) capped, and cobalt (Co)-doped EDTA capped Fe3O4 nanoparticles were synthesized electrochemically. The crystalline structure and phase information, surface capping, morphology and magnetization behavior of nanoparticles were studied by X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM), respectively. A low amount of the prepared nanoparticle (0.1Âżwt.%) was used in preparation of epoxy nanocomposites. Nonisothermal differential scanning calorimetry (DSC) under different heating rates was performed to study the potential of nanoparticles in curing epoxy resin with an aliphatic amine. The heat release data on nanocomposites suggest that EDTA capped Co-doped Fe3O4 considerably improved the curing reaction between epoxy resin and the curing agent. Calculations based on Cure Index approved qualitatively a shift from Poor to Good cure by concurrent lattice and surface modifications of magnetic nanoparticles. It is bielived that the approach used in this work can pave the way to enhance curability of epoxy nanocomposites by the combined modification of bulk and surface of nanoparticlesPostprint (author's final draft

    Hydrogen bonds in blends of poly(N-isopropylacrylamide), poly(n-ethylacrylamide) homopolymers, and carboxymethyl cellulose

    Get PDF
    Recently, it was reported that the physical crosslinking exhibited by some biopolymers could provide multiple benefits to biomedical applications. In particular, grafting thermoresponsive polymers onto biopolymers may enhance the degradability or offer other features, as thermothickening behavior. Thus, different interactions will affect the different hydrogen bonds and interactions from the physical crosslinking of carboxymethyl cellulose, the lower critical solution temperatures (LCSTs), and the presence of the ions. This work focuses on the study of blends composed of poly(N-isopropylacrylamide), poly(N-ethylacrylamide), and carboxymethyl cellulose in water and water/methanol. The molecular features, thermoresponsive behavior, and gelation phenomena are deeply studied. The ratio defined by both homopolymers will alter the final properties and the gelation of the final structures, showing that the presence of the hydrophilic groups modifies the number and contributions of the diverse hydrogen bonds.The authors want to acknowledge the funding obtained from the National Science Foundation of China (21574086), Shenzhen Fundamental Research Funds (No. KC2014ZDZJ0001A), Shenzhen Sci & Tech research grant (ZDSYS201507141105130), and China Postdoctoral Science Foundation Grant (2018M633119)
    • 

    corecore