12 research outputs found

    Parasitoids and hyperparasitoids associated with Ceroplastes sinensis Guer (Hem.: Coccidae) in Mazandaran province, Iran

    Get PDF
    We conducted a study to identify the parasitoid and hyperparasitoid waspsofCeroplastes sinensisonHedera helix L. in Mazandarn province in 2013. Primary parasitoid wasps were identified as the aphelinid species Aphytis hispanicus (Mercet, 1912) and Coccophagus lycimnia (Walker, 1839), the encyrtid Microterys nietneri (Motschulsky, 1859) and a hyperparasitoid wasp was identified as Pachyneuron muscarum (Linnaeus, 1758) (Pteromalidae) from Juybar. The species Metastenus concinnus (Walker, 1834) (Pteromalidae) and Isodromus flaviscutum (Hoffer & Trjapitzin, 1978) (Encyrtidae) were found to be parasitoids of the natural enemies of C. sinensis from Juybar. I. flaviscutum is newly recorded from Iran

    Determination of application time and concentration of mineral oil against Pulvinaria aurantii (Hemiptera: Coccidae) in northern Iran

    Get PDF
    To determine the most appropriate concentration and application time of mineral oil against Pulvinaria aurantii Cockerell, the reaction rate of egg hatching and the emergence of mobile cushion citrus instars to different concentrations of mineral oil in the laboratory conditions with a temperature of 4±25°C, relative humidity 5±75 percent and 12 hours of light every 24 hours over four days after applying the treatments was studied. In this study, four different concentrations of mineral oil including 0.2, 0.4, 0.6 and 0.8% (namely 200, 400, 600 and 800 ml /100 liter water) and control (water without mineral oil) were selected as treatments and tested on the samples of citrus cushion eggs in various stages of hatching (10, 30, 50, 70 and 90%). The results showed that the most appropriate time to control is when 50 percent of citrus cushion eggs are hatching and the best mineral oil concentration is 0.77%

    Integrated inhibition of citrus leafminer, Phyllocnistis citrella in Mazandaran Province, Iran

    Get PDF
    In this research, the effect of irrigation management on the production of new shoots and leaves produced by citrus plants, and damage rate caused by citrus leafminer, Phyllocnistis citrella was investigated. The study was performed in a completely randomized design with 3 treatment and 5 replicates for two consecutive years (2014-2015) in Besat citrus orchard of Sari Fajr Company. Treatment included control (without irrigation), conventional irrigation and irrigating based on water requirements (WaterCrop). The number of shoots and leaves produced and damaged by P. citrella in each treatment were counted from the beginning to the end of the growing season and then compared statistically. According to the obtained results, during sampling after the leaf miner emerged, the maximum number of shoots produced and infected related to conventional irrigation. The mean leaves produced by each plant in WaterCrop, conventional and control treatments was 111a, 108.3a, and 51.7b, respectively, which of these, 2, 26.5 and 3.5 of leaves was produced at a time that P. citrella was active and damaged the leaves to 1.71, 21.6, and 4.31%, respectively. The results of this study showed that irrigation is effective in germinating and producing the leaves of citrus trees. As it is clear, over the year, the maximum and minimum leaves before and after emerging the pest have been produced by the trees that were irrigated by WaterCrop method, which because the lower number of the leaves produced during periods when the pest is active, these trees suffered the lowest damage without the use of common pesticides

    Effects of different pest managements on biodiversity of insects in citrus orchards of Babolsar and Hadishahr districts in Iran

    Get PDF
    In this research, insect populations in citrus orchards of Hadishahr, Babolsar, Mazandaran Province, Iran, under different types of pest management including conventional orchard (CO), low input orchard (LIO) and free pesticides protocol orchard (FPPO) in winter and spring seasons during December 22, 2017 to June 21, 2018 were evaluated by installation of pitfall traps, sticky yellow cards and branch and leaf samples. The results on foliage samples in winter showed that the highest Shanon-Weiner index, Brilloun index, species richness and species frequency was obtained for LIO. In spring, the highest values of diversity indices, species richness and frequency was also calculated for LIO. The highest eveness indices was obtained for CO in winter and spring. Mean comparisons on data collected by sticky yellow cards showed that in winter and spring, the highest values of diversity indices, species richness and frequency was estimated for LIO, while in winter, the values of eveness indices for CO was significantly more than those for FPPO and LIO, and in spring, the highest values of eveness indices belonged to FPPO. Based on the results related to pitfall traps, the highest values of diversity indices, species richness and frequency was obtained for LIO, while the values of eveness indices calculated for CO was higher than those for FPPO and LIO

    Comparison of mineral oil spray with current synthetic pesticides to control important pests in citrus orchards and their side effects

    No full text
    Over the past years the most important citrus pests poorly controlled despite multiple spraying and growers suffered heavy damage. To this end, a study was done to evaluate and compare the conventional insecticides with mineral oil spray (MOS) for the control of citrus pests and adverse effects in citrus orchards in Mazandaran province. In this study, the diversity and abundance of carabid beetles, as a specific predator of snails, were compared in conventional and free protocol pesticide (or MOS) orchards. The results showed that the frequency and distribution of important citrus pests in free protocol pesticide orchards after three years of treatment was significantly lower than conventional orchards. The comparison showed that continual use of synthetic pesticides in citrus orchards in the province , leading to a sharp reduction in their population and species diversity. The results of this study indicate that the use of mineral oil can be a useful alternative to synthetic pesticides in citrus orchards of the East province

    Determination of economic injury level for first and second generations of Pulvinaria aurantii (Hem: Coccidae) in Thomson navel orange orchards

    No full text
    The citrus soft scale, Pulvinaria aurantii (Hem: Coccidae) is among the most important pests of citrus orchards in Asia. Damage occurs not only by direct feeding on plant sap, but also by excretion of abundant honeydew which underlies the growth of sooty molds on fruits, leaves, and young twigs. Although, chemical insecticides and mineral oils have long been used by growers to control P. aurantii, our current knowledge about the damage and economic injury level of this pest is insufficient. In this study, the economic injury level (EIL) of the first and second generations of P. aurantii on Thomson novel orange was investigated during two consecutive years (2011 and 2012). The study unit include a citrus orchard (3000 m2) located at Babolsar city, north Iran. Four branches of each selected tree with a proximate length of 25 cm were artificially infected by different numbers of P. aurantii egg sacs and monitored biweekly to record the number of infected leaves and fruits to both sooty molds P. aurantii instars. Finally, the number of fruits infected with sooty molds (more than 50% of the fruit surface) was used to estimate EIL using Pedigo formula. The EIL was calculated as 135, 102, and 125 egg sacs per branches with an average number of 8, 7, and 7 fruits for the first generation of 2011, and the first and second generations of 2012, respectively. These findings may be easily used by local growers to set their control programs based on the density of pest egg sacs on plant surfaces

    Favognathus Luxton 1973

    No full text
    Key to the females of known species of <i>Favognathus</i> <p>1. Dorsum with rosette patterns.......................................................................................................... 2</p> <p>– Dorsum without rosette patterns................................................................................................... 17</p> <p>2. Dorsum with one rosette patterns.................................................................................................... 3</p> <p>– Dorsum with two rosette patterns................................................................................................... 4</p> <p> 3. Cluster of cells associated with setae <i>c1</i>, trochanter III with one setae..................................................................................................................................................................... <i>F. distinctus</i> Swift</p> <p> – Cluster of cells associated with setae <i> d 1</i> , trochanter III with two setae................................................................................................................................................................ <i>F. insularis</i> (Luxton)</p> <p> 4. Dorsum evenly punctuated........................................................ <i>F. erzrumensis</i> Doğan & Ayyildiz</p> <p>– Dorsum partly or completely reticulated......................................................................................... 5</p> <p>5. Dorsum partly reticulated................................................................................................................ 6</p> <p>– Dorsum completely reticulated....................................................................................................... 9</p> <p> 6. Genu I with 5 setae; femur I with 5 setae......................................................... <i>F. maritimus</i> (Shiba)</p> <p> – Genu I with 5(+1 <i>κ</i>) setae; femur I with 4 setae............................................................................... 7</p> <p> 7. Tarsi III–IV with 8(+1 <i>ω</i>) setae; femur II with 2 setae......................... <i>F. turcicus</i> Koç & Ayyildiz</p> <p> – Tarsi III–IV with 9(+1 <i>ω</i>) setae; femur II with 3 setae.................................................................... 8</p> <p> 8. Setal formula of tarsi 16-14-10-10................................................ <i>F.amygdalus</i> Doğan & Ayyildiz</p> <p> – Setal formula of tarsi 17-14-10-10........................................ <i>F. pongolensis</i> Meyer & Ueckermann</p> <p>9. Anterior margin of hood denticulated........................................................................................... 10</p> <p>– Anterior margin of hood smooth................................................................................................... 13</p> <p> 10. Genu II with 4 setae; femur I with 3 setae......................................... <i>F. observabilis</i> (Kuznetsov)</p> <p> – Genu II with 4(+1 <i>κ</i>) setae; femur I with 4 setae......................................................................... 11</p> <p> 11. Intercoxal area smooth................................................................ <i>F. esfahaniensis</i> Khanjani <i>et al.</i></p> <p>– Intercoxal area striated............................................................................................................... 12</p> <p> 12. All reticulation cells of dorsal shield with pores and short striae; rosette patterns consist of 6–8 cells...................................................................... <i>F. hyrcanensis</i> Shirinbeik Mohajer & Bagheri</p> <p> – Medial reticulation cells of dorsal shield with pores; rosette patterns consist of 2–5 cells..................................................................................................................... <i>F. guilanicus</i> Khanjani <i>et al.</i></p> <p> 13. Genu II without famulus <i>κ</i>.......................................................................................................... 14</p> <p> – Genu II with famulus <i>κ</i>.............................................................................................................. 15</p> <p> 14. Intercoxal area with nonporous areas rest of venter covered with evenly distributed pores; prosternal apron with 16 foveolae............................................ <i>F. texasensis</i> (McDaniel & Bolen)</p> <p> – Intercoxal area finely striated with few punctations, reticulations posterior to coxae IV; prosternal apron with 12 foveolae........................................................................ <i>F. luxtoni</i> Koç & Ayyildiz</p> <p> 15. Setal formula of tarsi 16-14-12-8............................................... <i>F. pictus</i> (Summers & Chaudhri)</p> <p>– Setal formula of tarsi not as above.............................................................................................. 16</p> <p> 16. Setal formula of tarsi 16-12-10-10................................................................... <i>F. bafranus</i> Doğan</p> <p> – Setal formula of tarsi 17-14-10-10.......................................................... <i>F. distortus</i> (Kuznetzov)</p> <p>17. Dorsum evenly punctuated........................................................................................................ 18</p> <p>– Dorsum partly or completely reticulated.................................................................................... 27</p> <p> 18. Anterior margin of hood wavelike....................................... <i>F. dakotaensis</i> (Mc Daniel & Bolen)</p> <p>– Anterior margin of hood denticulated or smooth........................................................................ 19</p> <p>19. Anterior margin of hood denticulated......................................................................................... 20</p> <p>– Anterior margin of hood smooth................................................................................................. 23</p> <p> 20. Ventral shield partly reticulated...................................................................... <i>F. izmirensis</i> Akyol</p> <p>– Ventral shield punctuated or striated.......................................................................................... 21</p> <p> 21. Prosternal apron with 10 dimples............................................................ <i>F. denticulatus</i> (Luxton)</p> <p>– Prosternal apron with more than 10 dimples.............................................................................. 22</p> <p> 22. Prosternal apron with 16–18 dimples................................. <i>F. ochraceus</i> (Summers & Chaudhri)</p> <p> – Prosternal apron with 25 dimples................................................................... <i>F. magnus</i> (Luxton)</p> <p> 23. Femur I with 3 setae.................................................................................... <i>F. leopardus</i> (Luxton)</p> <p>– Femur I with 4 setae.................................................................................................................... 24</p> <p> 24. Tarsi I with 13(+2 <i>ω</i>) setae.................................................................... <i>F. kamili</i> Donel & Doğan</p> <p> – Tarsi I with 15(+2 <i>ω</i>) setae.......................................................................................................... 25</p> <p> 25. Tarsi II with 11(+2 <i>ω</i>) setae............................ <i>F. kazemii</i> Mohammad Doustaresharaf & Bagheri</p> <p> – Tarsi II with 12(+2 <i>ω</i>) setae......................................................................................................... 26</p> <p> 26. Prosternal apron with 14–18 dimples...................................................... <i>F. orbiculatus</i> (Livshitz)</p> <p> – Prosternal apron with 17–19 dimples.................................................................... <i>F. cypselus</i> Fan</p> <p>27. Dorsum completely reticulated................................................................................................... 28</p> <p>– Dorsum partly reticulated........................................................................................................... 30</p> <p> 28. Addorsal setae <i>tc</i> on tarsus II dissimilar....................................................... <i>F. rugosus</i> (Livshitz)</p> <p> – Addorsal setae <i>tc</i> on tarsus II similar.......................................................................................... 29</p> <p> 29. Anterior margin of hood denticulated; dorsal shield with faint reticulations and striate..................................................................................................................... <i>F. favus</i> (Summers & Chaudhri)</p> <p> – Anterior margin of hood smooth; dorsal shield with strong reticulations and striate................................................................................................................................................. <i>F. gersoni</i> Luxton</p> <p>30. Anterior margin of hood denticulated......................................................................................... 31</p> <p>– Anterior margin of hood smooth................................................................................................. 34</p> <p> 31. Genu II with 4(+1 <i>κ</i>) setae..................................................................... <i>F. alvandii</i> Khanjani <i>et al.</i></p> <p> – Genu II with 5(+1 <i>κ</i>) setae........................................................................................................... 32</p> <p> 32. Setal formula of tarsi 16-13-10-10............................................................................. <i>F. goffi</i> Swift</p> <p>– Setal formula of tarsi not as above.............................................................................................. 33</p> <p> 33. Setal formula of tarsi 15-14-10-9........................................ <i>F. dama</i> (Chaudhri, Akbar & Rasool)</p> <p> – Setal formula of tarsi 17-14-10-10........................................................ <i>F. farshchiani</i> Jafari <i>et al.</i></p> <p> 34. Hood wider than long...................................................................... <i>F. barrasi</i> (Smiley & Moser)</p> <p>– Hood longer than wide................................................................................................................ 35</p> <p> 35. Trochanter IV without setae............................................................................... <i>F. variabilis</i> Swif</p> <p>– Trochanter IV with one setae...................................................................................................... 36</p> <p> 36. Genu II without famulus <i>κ</i>.......................................................................................................... 37</p> <p> – Genu II with famulus <i>κ</i>.............................................................................................................. 38</p> <p> 37. Tarsi II with 11(+2 <i>ω</i>) setae................................................... <i>F. latibarrus</i> Meyer & Ueckermann</p> <p> – Tarsi II with 12(+2 <i>ω</i>) setae........................................................ <i>F. cucurbitellus</i> (Meyer & Ryke)</p> <p> 38. Femur I with 3 setae....................................................................................... <i>F. cucurbita</i> Berlese</p> <p>– Femur I with 4 setae.................................................................................................................... 39</p> <p> 39. Sternocoxal area with a pair of angular condyles........................................... <i>F. cordylus</i> Luxton</p> <p>– Sternocoxal area without angular condyles................................................................................ 40</p> <p> 40. Setal formula of tarsi 17-14-10-10......................................... <i>F. mirazii</i> Khanjani & Ueckermann</p> <p>– Setal formula of tarsi not as above.............................................................................................. 41</p> <p> 41. Genu IV with 2 setae; prosternal apron with 20 dimples............................................................................................................................................................................ <i>F. naghii</i> Hassanzadeh <i>et al.</i></p> <p> – Genu IV with 3 setae; prosternal apron with 14 dimples......................................................................................................................................................................... <i>F. acaciae</i> Doğan & Ayyildiz</p>Published as part of <i>Paktinat-Saeij, Saeid, Bagheri, Mohammad & Damavandian, Mohammad Reza, 2020, Redescription of Favognathus insularis (Luxton) (Acari: Trombidiformes: Cryptognathidae) from Brazil, with a key to the world species of Favognathus, pp. 13-21 in Persian Journal of Acarology 9 (1)</i> on pages 17-19, DOI: 10.22073/pja.v9i1.58009, <a href="http://zenodo.org/record/3762742">http://zenodo.org/record/3762742</a&gt

    Favognathus insularis

    No full text
    <i>Favognathus insularis</i> (Luxton, 1973) <p> <b>(Figs. 1–9)</b></p> <p> <i>Cryptognathus insularis</i> - Luxton, 1973: 64.</p> <p> <i>Favognathus insularis</i> (Luxton) - Luxton, 1987: 113; Krisper and Schneider 1998: 201; Doğan, 2008: 1677.</p> <p> <i>Diagnosis</i></p> <p> Anterior margin of the hood smooth; dorsal and ventral shield laterally ornamented with reticulations; reticular cells with 4–6 peripheral pores and short striae; dorsoventrally with four slitlike cupules; dorsum with one pair of cluster associated with setae <i>d1</i>; intercoxal area smooth; femora I–IV: 4–3–2–2; genua I–IV: 5(+ <i>κ</i>)–4(+ <i>κ</i>)–2–3 tarsi I–IV: 15(+ <i>ω</i> 1+ <i>ω</i> 2)–12(+ <i>ω</i> 1+ <i>ω</i> 2)–9(+ <i>ω</i>)–9(+ <i>ω</i>).</p> <p> <i>Distribution</i></p> <p>Niue Island (Luxton 1973); Brazil (in this study).</p> <p> <i>Description</i></p> <p> <b>Female (n = 4) –</b> Red-colored while alive. Length of body 260–283; Length of subcapitulum 87–97; width of body: 144–180; leg I: 198–221, leg II: 161–179, leg III: 142–165, leg IV: 180–191.</p> <p> <b>Dorsum (Fig. 1) –</b> Anterior margin of the hood smooth; hood with 6–7 dimples in each longitudinal row. Dorsal shield ornamented with pores, evenly distributed, lateral parts of dorsal shield reticulated; central area of dorsum with punctuations and striations (Fig. 1, B); reticulate pattern formed by cells, each bearing 4–6 pores periphery and pores distributed evenly in all reticulation cells; short striae; dorsum with 11 pairs of simple setae, one pair of eyes and one pair of postocular bodies laterally between setae <i>sci</i> and <i>sce</i>; dorsal body with three pairs of slit-like cupules as follows: <i>ia</i> between setae <i>sce</i> and <i>c1</i>, <i>im</i> beside setae <i>e2</i> and <i>ip</i> beside setae <i>h2</i>; a cluster of reticulated cells associated with setae <i>d1</i> present, these rosette patterns consist of four cells; anal opening dorsoventrally, with three pairs of setae (<i> ps 1–3</i> ). Length of dorsal setae and their distances: <i>vi</i> 13–14; <i>ve</i> 21–25; <i>sci</i> 17–19; <i> c 1</i> : 25–28; <i>sce</i>: 22–25; <i> d 1</i> : 26–30; <i> e 1</i> : 26–29; <i> e 2</i> : 22–27; <i> f 1</i> : 25–28; <i> h 1</i> : 23–26; <i> h 2</i> : 18–20; <i>vi–vi</i>: 32–38; <i>vi–ve</i>: 8–10; <i>ve–ve</i>: 32–37; <i>sci–sci</i>: 49–53; <i>sci–sce</i>: 21–32; <i>c1–c1</i>: 56–60; <i>sce – sce</i> 84–100; <i>c1–d1</i> 45–49; <i>d1–d1</i>: 100–110; <i>d1–e1</i>: 34–42; <i>e1–e1</i>: 68–72; <i>e2–e2</i>: 93–96; <i>e1–f1</i>: 41–42; <i> f1– f 1</i> : 33–38; <i> f 1 –h 1</i> : 28–32; <i> f 1 –h 2</i> : 36–40; <i> h 1 –h 1</i> : 14–19; <i> h 1 –h 2</i> 21–29; <i> h 2 –h 2</i> : 68–72.</p> <p> <b>Venter (Fig. 2) –</b> Prosternal apron wedge-shaped with 15–18 foveolae; venter with three pairs of ventral setae (<i>1a</i>, <i>3a</i> and <i>4a</i>); genital opening with two pairs of genital (<i>g1–2</i>) and three pairs of aggenital (<i>ag1–3</i>) setae; ventral shield with lateral reticulations, fine striae and pores, intercoxal area smooth and with a longitudinal row of pores; venter with cupule <i>ih</i>. Length of ventral setae: <i>1a</i> 11– 12, <i>3a</i> 12–13, <i>4a</i> 11–13, <i> ag 1</i> 9–10, <i> ag 2</i> 9–10, <i> ag 3</i> 8–9, <i> g 1</i> 10–11, <i> g 2</i> 10–11; <i> ps 1</i> 11–13, <i> ps 2</i> 10–11, <i> ps 3</i> 8–10.</p> <p> <b>Gnathosoma (Figs. 3–5) –</b> Hypostome narrow (Fig. 4), with one pair of long setae <i>m</i> 22–27 and two pairs of adoral setae, <i> or 1</i> 4–5, <i> or 2</i> 7–8 (Fig. 4); chelicerae 84–90; (Fig. 5); palp (Fig. 3) 80–91 long, palptarsus with four eupathidia, four simple setae and one solenidion; palptibia with three simple setae; palpgenu with two and palpfemur with three simple setae. Palp trochanter without setae.</p> <p> <b>Legs (Figs. 6–9) –</b> Setal formulae of leg segments (solenidia in parentheses and not included): coxae 2–1–2–1; trochanters 1–1–2–1; femora 4–3–2–2; genua 5(+ <i>κ</i>)–4(+ <i>κ</i>)–2–3; tibiae 5(+ <i>φ</i> + <i>φp</i>)– 5(+ <i>φp</i>)–4(+ <i>φp</i>)–3; tarsi 15(+ <i>ω</i> 1+ <i>ω</i> 2)–12(+ <i>ω</i> 1+ <i>ω</i> 2)–9(+ <i>ω</i> 1)–9(+ <i>ω</i> 1).</p> <p> <b>Male and immature stages –</b> Unknown.</p> <p> <i>Material examined</i></p> <p>Four females from soil and rotten leaves, collected on September 28, 2015 at Piracicaba, state of São Paulo, Brazil by Saeid Paktinat-Saeij. All specimens are deposited in the Acarological Collection, Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.</p> <p> <i>Remarks</i></p> <p> The original description of this species is incomplete and insufficiently illustrated. The Brazilian specimens show all characters of the original description but with more details. Herein, we provide the only description of this species containing complete details with legs setal number which is missed in previous ones. The morphological characteristics and general appearance of the Brazilian specimens are similar to those of the original description of Luxton (1973). However, it differs from newly found specimens in length and width of dorsal shield and length of some dorsal setae of which are longer than those of the original description, for example: length of dorsal setae <i> d 1</i> 26–30, <i> e 1</i> 26 – 29, <i> f 1</i> 25–28 in Brazilian specimens versus <i> d 1</i> 22, <i> e 1</i> 26, <i> f 1</i> 22 in original description. Furthermore prosternal apron with 15–18 foveolae versus 14 foveolae in specimens collected by Luxton (1973).</p> <p> Flechtmann (1971) mentioned the family Cryptognathidae in his unpublished thesis and described a new species as <i>Cryptognathus agapictus</i> Flechtmann, 1971 (<i>Favognathus agapictus</i> (Flechtmann, 1971), since it is not published, according to ICZN - Article 8, <i>C. agapictus</i> is an invalid species. Based on similarity of the characters and descriptions of these specimens, it seems that they are conspecific.</p>Published as part of <i>Paktinat-Saeij, Saeid, Bagheri, Mohammad & Damavandian, Mohammad Reza, 2020, Redescription of Favognathus insularis (Luxton) (Acari: Trombidiformes: Cryptognathidae) from Brazil, with a key to the world species of Favognathus, pp. 13-21 in Persian Journal of Acarology 9 (1)</i> on pages 14-17, DOI: 10.22073/pja.v9i1.58009, <a href="http://zenodo.org/record/3762742">http://zenodo.org/record/3762742</a&gt

    Effects of temperature on population growth parameters of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) reared on Planococcus citri (Homoptera: Pseudococcidae)

    No full text
    The effect of temperature on the development, survival, fecundity and population growth parameters of Cryptolaemus montrouzieri Mulsant (Col.: Coccinellidae) reared on Planococcus citri Risso (Hom.: Pseudococcidae) was determined at five constant temperatures (18, 22, 26, 30 and 32±1°C) in the laboratory conditions. Results showed a temperature - dependent development of the coccinellid. The mean total of immature period was estimated 76.6±0.9, 33.9±0.1, 25.8±0.1, 22.6±0.1 and 26.2±1.4 days at 18, 22, 26, 30 and 32°C, respectively. The highest and lowest values of R0, rm and λ were obtained 369.9±50.2 and 2.5±0.8 (female/female/generation), 0.07±0.01 and 0.02±0.01 (female/female/day) and 1.08±0.01 and 1.02±0.01 (day-1) at 26 and 32°C, respectively. The lowest values of generation time (T) and doubling time (Dt) were calculated 42.2±0.9 and 8.9±0.5 days at 32 and 26°C, respectively. The lower and higher developmental threshold of total of immature period were obtained 11.5 and 25.5°C, respectively. The thermal requirement for completion of total of immature period of this predator were estimated 400 DD. These results showed that 26°C and/or adjacent temperature is most suitable for mass rearing of this predator
    corecore