15 research outputs found

    Upconverting nano-engineered surfaces: maskless photolithography for security applications

    Get PDF
    The two complementary technologies of colloidal upconverting nanoemitters and maskless photolithography are exploited to fabricate nanoengineered optically active surfaces for anticounterfeiting applications based on the multiphoton absorption phenomenon in lanthanide nanocomposites with a visualization wavelength in the NIR. It is demonstrated that the unique optical, thermal, and temporal characteristics of these versatile upconverting surface distinguishes them from their counterparts. A unique behavior that is captured is the ability to actively tune their emission color by modifying the pumping power, temperature, and excitation frequency. A new low-cost negative photoresist is employed for implementation of maskless photolithography of single- and double-color labels using two efficient upconverting nanocomposites based on NaYF4:Yb3+, Er3+ and NaYF4:Yb3+, Tm3+ nanoemitters. In addition, it is shown that the detectability of the proposed anticounterfeiting approach can be carried out using just a smartphone. Each of the emission peaks of the upconversion nanoparticles is associated with a different multiphoton absorption mechanism and their thermosensitivity varies from one peak to another. Furthermore, their photoluminescent color changes by scanning the excitation beam impinging on the surfaces composed of both upconversion nanoparticles doped in the UV-curable resist. Long-term photostability of these surfaces under continuous excitation by a high power laser makes them a promising nanoemitters for the next generation of anticounterfeiting labels

    Hybrid dissolved-oxygen and temperature sensing: a nanophotonic probe for real-time monitoring of chlorella algae

    Get PDF
    Dissolved-oxygen concentration and temperature are amongst the crucial parameters required for the precise monitoring of biological and biomedical systems. A novel hybrid nanocomposite probe for real-time and contactless measurement of both dissolved-oxygen concentration and temperature, based on a combination of downconverting phosphorescent molecules of platinum octaethylporphyrin and lanthanide-doped upconverting nanoparticles immobilized in a host of polystyrene, is here introduced. Chlorella algae are employed here as a model to demonstrate the hybrid nanophotonic sensor’s capability to monitor the aforementioned two parameters during the photosynthesis process, since these are among the parameters impacting their production efficiency. These algae have attracted tremendous interest due to their potential to be used for diverse applications such as biofuel production; however, feasibility studies on their economic production are still underway

    DNA structure spectroscopy by synthetic pigments using LED lighting

    No full text
    It is clear that DNA concentration and biological detection devices have many applications in the fields of genetics and biotechnology. For this goal, some similar devices have been designed working with the laser light which the disadvantages of them are high prices and the use of significant amounts of sample volume. But this designed device which works with LED light has very cheap manufacturing cost. The amounts of DNA used in this device are very low, about a few micro-liters and measurement of small, fast and portable it is also the advantages of these devices. The Data recorded as voltage versus time and the Fourier transform the frequency domain. From the frequency curve, by using the Byrlambrt it is possible to obtain the relative concentrations of DNA, viruses and assays measuring DNA damage and many other applications. By use of this device, the concentration of DNA colored with three different pigments was measured

    Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method

    No full text
    This study investigated the synthesis of magnesium ferrite (MgFe2O4) nanoparticles with cubic symmetry that were prepared by a thermal-treatment method by using a solution that contained poly (vinyl alcohol) (PVA) as a capping agent and Mg and Fe nitrates as alternative sources of metal. Heat treatment was conducted using an electric cylinder furnace in an air atmosphere at temperatures between 673 and 973 K, and magnesium ferrite nanoparticles were produced that had different crystallite sizes ranging from5 to 8 nm. The products were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), X-ray analysis (EDXA), and Fourier transform infrared spectroscopy (FT-IR). All the samples calcined from 673 to 973 K exhibited super paramagnetic behavior with unpaired electrons spins, which was confirmed by using a vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR) spectroscopy

    Nanotechnology; its significance in cancer and photodynamic therapy

    No full text
    In the last decade, developments in nanotechnology have provided a new field in medicine called “Nanomedicine”. Nanomedicine has provided new tools for photodynamic therapy. Quantum dots (QDs) are approximately spherical nanoparticles that have attracted broad attention and have been used in nanomedicine applications. QDs have high molar extinction coefficients and photoluminescence quantum yield, narrow emission spectra, broad absorption, large effective stokes shifts. QDs are more photostable and resistant to metabolic degradation. These photosensitizing properties can be used as photosensitizers for Photodynamic Therapy (PDT). PDT has been recommended for its unique characteristic, such as low side effect and more efficiency. Therefore, nanomedicine leads a promising future for targeted therapy in cancer tumor. Furthermore, QDs have recently been applied in PDT, which will be addressed in this review letter. Also this review letter evaluates key aspects of nano-particulate design and engineering, including the advantage of the nanometer scale size range, biological behavior, and safety profile

    Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrichment and determination of rutin

    No full text
    Objective(s): In our study, graphene oxide-TiO2 nanocomposite (GO/TiO2) was prepared and used for the enrichment of rutin from real samples for the first time. Materials and Methods: The synthesized GO/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, and FT-IR spectra.  The enrichment process is fast and highly efficient. The factors including contact time, pH, and amount of GO/TiO2 affecting the adsorption process were studied. Results: The maximum adsorption capacity for ciprofloxacin was calculated to be 59.5 mg/g according to the Langmuir adsorption isotherm. The method yielded a linear calibration curve in the concentration ranges from 15 to 200 μg/L for the rutin with regression coefficients (r2) of 0.9990. The limits of detection (LODs, S/N=3) and limits of quantification (LOQs, S/N=10) were found to be 8 μg/Land 28 μg/L, respectively. Both the intra-day and inter-day precisions (RSDs) were < 10% . Conclusion :The developed approach offered wide linear range, and good reproducibility. Owing to the diverse structures and unique characteristic, GO/TiO2 possesses great potential in the enrichment and analysis of trace rutin in real aqueous samples

    Hybrid dissolved-oxygen and temperature sensing: a nanophotonic probe for real-time monitoring of chlorella algae

    No full text
    Dissolved-oxygen concentration and temperature are amongst the crucial parameters required for the precise monitoring of biological and biomedical systems. A novel hybrid nanocomposite probe for real-time and contactless measurement of both dissolved-oxygen concentration and temperature, based on a combination of downconverting phosphorescent molecules of platinum octaethylporphyrin and lanthanide-doped upconverting nanoparticles immobilized in a host of polystyrene, is here introduced. Chlorella algae are employed here as a model to demonstrate the hybrid nanophotonic sensor’s capability to monitor the aforementioned two parameters during the photosynthesis process, since these are among the parameters impacting their production efficiency. These algae have attracted tremendous interest due to their potential to be used for diverse applications such as biofuel production; however, feasibility studies on their economic production are still underway
    corecore