82 research outputs found

    Prevalence and Intensity of Depression in Mothers of Children with Beta-Thalassemia Major In Talghani Hospital of Gorgan, Iran

    Get PDF
    Background: Thalassemia is a chronic disease that it leads to psychological and social problems for parents. Mothers are at markedly increased risk of suffering from psychological distress and depression because they usually take on a considerable part of extra care that their children need.This study was designed to determine prevalence and intensity of depression in mothers with a thalassemic child. Material and Methods: In this cross – sectional study, 65 mothers of children with thalassemia major (case group) and 65 mothers of children without thalassemia major (control group) were assessed using the Beck Depression Inventory (BDI). Data were analyzed by using SPSS (v 16.0) for windows. Results: Prevalence of depression was significantly higher in case group than that in control group (84.6%vs. 56.9%, p <0.05). Moderate depression had a highest prevalence in the both groups (33.4% in case group and 30.8% in control group). Prevalence of severe depression in case group was markedly higher than that in control group (29.2% vs. 3.1% p<0.05). There was a significant difference between intensity of depression in mothers of case group that had another child with beta-thalassemia major (p<0.05). Conclusion: Mothers of children with thalassemia major are vulnerable to depression. They need psychosocial support to promote their health

    Influence of Local Mechanical Properties of High Strength Steel from Large Size Forged Ingot on Ultrasonic Wave Velocities

    Get PDF
    In the metallurgical industry, ultrasonic inspection is routinely used for the detection of defects. For the nondestructive inspection of small high strength steel parts, the material can be considered isotropic. However, when the size of the parts under inspection is large, the isotropic material hypothesis does not necessarily hold. The aim of this study is to investigate the effect of the variation in mechanical properties such as grain size, Young\u27s modulus, Poisson’s ratio, chemical composition on longitudinal and transversal ultrasonic wave velocities. A 2 cm thick slice cut from a 40-ton bainitic steel ingot that was forged and heat treated was divided into 875 parallelepiped samples of 2x4x7 cm3. A metallurgical study has been performed to identify the phase and measure the grain size. Ultrasonic velocity measurements at 2.25 MHz for longitudinal and transversal waves were performed. The original location of the parallelepiped samples in the large forged ingot and the measured velocities were used to produce an ultrasonic velocity map. Using a local isotropy assumption as well as the local density of the parallelepiped samples calculated from the chemical composition of the ingot provided by a previously published study [1], Young’s modulus and Poisson’s ratio were calculated from the longitudinal and transversal wave velocities. Microtensile measurements were used to validate Young’s modulus obtained by the ultrasonic wave velocity and an excellent match was observed

    Microstructural and Microhardness Evolution from Homogenization and Hot Isostatic Pressing on Selective Laser Melted Inconel 718: Structure, Texture, and Phases

    Get PDF
    In this work, the microstructure, texture, phases, and microhardness of 45° printed (with respect to the build direction) homogenized, and hot isostatically pressed (HIP) cylindrical IN718 specimens are investigated. Phase morphology, grain size, microhardness, and crystallographic texture at the bottom of each specimen differ from those of the top due to changes in cooling rate. High cooling rates during the printing process generated a columnar grain structure parallel to the building direction in the as-printed condition with a texture transition from (001) orientation at the bottom of the specimen to (111) orientation towards the specimen top based on EBSD analysis. A mixed columnar and equiaxed grain structure associated with about a 15% reduction in texture is achieved after homogenization treatment. HIP treatment caused significant grain coarsening, and engendered equiaxed grains with an average diameter of 154.8 µm. These treatments promoted the growth of δ-phase (Ni3Nb) and MC-type brittle (Ti, Nb)C carbides at grain boundaries. Laves phase (Fe2Nb) was also observed in the as-printed and homogenized specimens. Ostwald ripening of (Ti, Nb)C carbides caused excessive grain growth at the bottom of the HIPed IN718 specimens, while smaller grains were observed at their top. Microhardness in the as-fabricated specimens was 236.9 HV and increased in the homogenized specimens by 19.3% to 282.6 HV due to more even distribution of secondary precipitates, and the nucleation of smaller grains. A 36.1% reduction in microhardness to 180.5 HV was found in the HIPed condition due to phase dissolution and differences in grain morphology

    Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments

    Get PDF
    3D printing results in anisotropy in the microstructure and mechanical properties. The focus of this study is to investigate the structure, texture and phase evolution of the as-printed and heat treated IN718 superalloy. Cylindrical specimens, printed by powder-bed additive manufacturing technique, were subjected to two post-treatments: homogenization (1100 °C, 1 h, furnace cooling) and hot isostatic pressing (HIP) (1160 °C, 100 MPa, 4 h, furnace cooling). The Selective laser melting (SLM) printed microstructure exhibited a columnar architecture, parallel to the building direction, due to the heat flow towards negative z-direction. Whereas, a unique structural morphology was observed in the x-y plane due to different cooling rates resulting from laser beam overlapping. Post-processing treatments reorganized the columnar structure of a strong {002} texture into fine columnar and/or equiaxed grains of random orientations. Equiaxed structure of about 150 µm average grain size, was achieved after homogenization and HIP treatments. Both δ-phase and MC-type brittle carbides, having rough morphologies, were formed at the grain boundaries. Delta-phase formed due to γ″-phase dissolution in the γ matrix, while MC-type carbides nucleates grew by diffusion of solute atoms. The presence of (Nb0.78Ti0.22)C carbide phase, with an fcc structure having a lattice parameter a = 4.43 Å, was revealed using Energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD) analysis. The solidification behavior of IN718 alloy was described to elucidate the evolution of different phases during selective laser melting and post-processing heat treatments of IN71

    Assessment of friction stir weld integrity for process control

    Get PDF
    Peer reviewed: YesNRC publication: Ye

    Impact Toughness and Tensile Properties Improvement through Microstructure Control in Hot Forged Nb-V Microalloyed Steel

    Get PDF
    The influence of thermomechanical processing parameters such as reheating temperature, deformation temperature, deformation percent and cooling rate on achieving high impact toughness properties was studied in a Nb-V microalloyed steel to be used as forged parts in automotive applications. 15 mm long and 65 mm diameter billets were forged using a 20 MN mechanical press. Tensile and Charpy impact tests specimens were machined out of the central part of the forged billets. The microstructure of the specimens was examined for each experimental condition using optical microscopy. Phase identification and distribution was studied using X-ray diffraction and orientation image microscopy techniques. The results indicate that, increasing the reheating temperature above the dissolution temperature of (Nb)(C, N) improved the impact energy values. By increasing the cooling rate from 0.3 to 3°C/s both tensile strength and impact toughness were improved. High elongation percent was also observed on samples reheated at higher temperature and/or cooled with the higher cooling rates. The obtained mechanical properties were related to the characteristics of microstructural components including acicular ferrite, retained austenite, pearlite and ferrite.The interrelationship between thermomechanical processing parameters, microstructure development, and final mechanical properties were identified and optimized forging conditions to obtain high impact energy (>30 J) microalloyed forge steels were determined

    Modeling Metadynamic Recrystallization of a Die Steel during Ingot Breakdown Process

    No full text
    Ingot forging processes often consist of several successive deformation steps with high interpass times, during which metadynamic recrystallization (MDRX) occurs. Two-stage isothermal compression tests were carried out at 1150°C and 1200°C with strain rates of 0.25-2s−1 and interpass times of 5-25s. Based on the experimental results, a material model for MDRX is proposed. The constitutive model was implemented in Forge NxT 1.1® software to simulate the multistage compression. Results from the material model are consistent with the numerical analysis and experimental results

    Finite Element Simulation of High-Speed Blow Forming of an Automotive Component

    No full text
    High-speed blow forming (HSBF) is a new technology for producing components with complex geometries made of high strength aluminum alloy sheets. HSBF is considered a hybrid-superplastic forming method, which combines crash forming and gas blow forming. Due to its novelty, optimization of the deformation process parameters is essential. In this study, using the finite element (FE) code ABAQUS, thinning of an aluminum component produced by HSBF under different strain rates was investigated. The impact of element size, variation of friction coefficient, and material constitutive model on thinning predictions were determined and quantified. The performance of the FE simulations was validated through forming of industrial size parts with a complex geometry for the three investigated strain rates. The results indicated that the predictions are sensitive to the element size and the coefficient of friction. Remarkably, compared to a conventional power law model, the variable m-value viscoplastic (VmV) model could precisely predict the thickness variation of the industrial size component
    • …
    corecore