7,197 research outputs found

    Glitch subtraction from gravitational wave data using adaptive spline fitting

    Get PDF
    Transient signals of instrumental and environmental origins ( glitches ) in gravitational wave data elevate the false alarm rate of searches for astrophysical signals and reduce their sensitivity. Glitches that directly overlap astrophysical signals hinder their detection and worsen parameter estimation errors. As the fraction of data occupied by detectable astrophysical signals will be higher in next generation detectors, such problematic overlaps could become more frequent. These adverse effects of glitches can be mitigated by estimating and subtracting them out from the data, but their unpredictable waveforms and large morphological diversity pose a challenge. Subtraction of glitches using data from auxiliary sensors as predictors works but not for the majority of cases. Thus, there is a need for nonparametric glitch mitigation methods that do not require auxiliary data, work for a large variety of glitches, and have minimal effect on astrophysical signals in the case of overlaps. In order to cope with the high rate of glitches, it is also desirable that such methods be computationally fast. We show that adaptive spline fitting, in which the placement of free knots is optimized to estimate both smooth and non-smooth curves in noisy data, offers a promising approach to satisfying these requirements for broadband short-duration glitches, the type that appear quite frequently. The method is demonstrated on glitches drawn from three distinct classes in the Gravity Spy database as well as on the glitch that overlapped the double neutron star signal GW170817. The impact of glitch subtraction on the GW170817 signal, or those like it injected into the data, is seen to be negligible

    Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor

    Get PDF
    Background The transition from exponential to stationary phase in Streptomyces coelicolor is accompanied by a major metabolic switch and results in a strong activation of secondary metabolism. Here we have explored the underlying reorganization of the metabolome by combining computational predictions based on constraint-based modeling and detailed transcriptomics time course observations. Results We reconstructed the stoichiometric matrix of S. coelicolor, including the major antibiotic biosynthesis pathways, and performed flux balance analysis to predict flux changes that occur when the cell switches from biomass to antibiotic production. We defined the model input based on observed fermenter culture data and used a dynamically varying objective function to represent the metabolic switch. The predicted fluxes of many genes show highly significant correlation to the time series of the corresponding gene expression data. Individual mispredictions identify novel links between antibiotic production and primary metabolism. Conclusion Our results show the usefulness of constraint-based modeling for providing a detailed interpretation of time course gene expression data

    Hard-wall Potential Function for Transport Properties of Alkali Metals Vapor

    Full text link
    This study demonstrates that the transport properties of alkali metals are determined principally by the repulsive wall of the pair interaction potential function. The (hard-wall) Lennard-Jones(15-6) effective pair potential function is used to calculate transport collision integrals. Accordingly, reduced collision integrals of K, Rb, and Cs metal vapors are obtained from Chapman-Enskog solution of the Boltzman equation. The law of corresponding states based on the experimental-transport reduced collision integral is used to verify the validity of a LJ(15-6) hybrid potential in describing the transport properties. LJ(8.5-4) potential function and a simple thermodynamic argument with the input PVT data of liquid metals provide the required molecular potential parameters. Values of the predicted viscosity of monatomic alkali metals vapor are in agreement with typical experimental data with the average absolute deviation 2.97% for K in the range 700-1500 K, 1.69% for Rb, and 1.75% for Cs in the range 700-2000 K. In the same way, the values of predicted thermal conductivity are in agreement with experiment within 2.78%, 3.25%, and 3.63% for K, Rb, and Cs, respectively. The LJ(15-6) hybrid potential with a hard-wall repulsion character conclusively predicts best transport properties of the three alkali metals vapor.Comment: 21 pages, 5 figures, 41 reference

    Simulations of Coherent Synchrotron Radiation on Parallel Hybrid GPU/CPU Platform

    Get PDF
    Coherent synchrotron radiation (CSR) is an effect of self-interaction of an electron bunch as it traverses a curved path. It can cause a significant emittance degradation, as well as fragmentation and microbunching. Numerical simulations of the 2D/3D CSR effects have been extremely challenging due to computational bottlenecks associated with calculating retarded potentials via integrating over the history of the bunch. We present a new high-performance 2D, particle-in-cell code which uses massively parallel multicore GPU/GPU platforms to alleviate computational bottlenecks. The code formulates the CSR problem from first principles by using the retarded scalar and vector potentials to compute the self-interaction fields. The speedup due to the parallel implementation on GPU/CPU platforms exceeds three orders of magnitude, thereby bringing a previously intractable problem within reach. The accuracy of the code is verified against analytic 1D solutions (rigid bunch) and semi-analytic 2D solutions for the chirped bunch. Finally, we use the new code in conjunction with a genetic algorithm to optimize the design of a fiducial chicane

    Electromagnetic waves in NUT space: Solutions to the Maxwell equations

    Full text link
    In this paper, using the Newman-Penrose formalism, we find the Maxwell equations in NUT space and after separation into angular and radial components solve them analytically. All the angular equations are solved in terms of Jaccobi polynomials. The radial equations are transformed into Hypergeometric and Heun's equations with the right hand sides including terms of different order in the frequency of the perturbation which allow solutions in the expansion of this parameter.Comment: 19 pages, Revtex format, Minor changes including an extention of the discussion and typos correction, (Extended version of the article presented to the GR16 conference, July 15-21 2001, Durban, South Africa

    Area Spectrum of Kerr and extremal Kerr Black Holes from Quasinormal Modes

    Full text link
    Motivated by the recent interest in quantization of black hole area spectrum, we consider the area spectrum of Kerr and extremal Kerr black holes. Based on the proposal by Bekenstein and others that the black hole area spectrum is discrete and equally spaced, we implement Kunstatter's method to derive the area spectrum for the Kerr and extremal Kerr black holes. The real part of the quasinormal frequencies of Kerr black hole used for this computation is of the form mΩm\Omega where Ω\Omega is the angular velocity of the black hole horizon. The resulting spectrum is discrete but not as expected uniformly spaced. Thus, we infer that the function describing the real part of quasinormal frequencies of Kerr black hole is not the correct one. This conclusion is in agreement with the numerical results for the highly damped quasinormal modes of Kerr black hole recently presented by Berti, Cardoso and Yoshida. On the contrary, extremal Kerr black hole is shown to have a discrete area spectrum which in addition is evenly spaced. The area spacing derived in our analysis for the extremal Kerr black hole area spectrum is not proportional to ln3\ln 3. Therefore, it does not give support to Hod's statement that the area spectrum An=(4lp2ln3)nA_{n}=(4l^{2}_{p}ln 3)n should be valid for a generic Kerr-Newman black hole.Comment: 10 pages, no figure, LaTeX; v2: 12 pages, clarifying comments and an Appendix are added, version to appear in Mod. Phys. Lett.
    corecore