360 research outputs found

    A Defense Framework Against Denial-of-Service in Computer Networks

    Get PDF
    Denial-of-Service (DoS) is a computer security problem that poses a serious challenge totrustworthiness of services deployed over computer networks. The aim of DoS attacks isto make services unavailable to legitimate users, and current network architectures alloweasy-to-launch, hard-to-stop DoS attacks. Particularly challenging are the service-level DoSattacks, whereby the victim service is flooded with legitimate-like requests, and the jammingattack, in which wireless communication is blocked by malicious radio interference. Theseattacks are overwhelming even for massively-resourced services, and effective and efficientdefenses are highly needed. This work contributes a novel defense framework, which I call dodging, against service-level DoS and wireless jamming. Dodging has two components: (1) the careful assignment ofservers to clients to achieve accurate and quick identification of service-level DoS attackersand (2) the continuous and unpredictable-to-attackers reconfiguration of the client-serverassignment and the radio-channel mapping to withstand service-level and jamming DoSattacks. Dodging creates hard-to-evade baits, or traps, and dilutes the attack "fire power".The traps identify the attackers when they violate the mapping function and even when theyattack while correctly following the mapping function. Moreover, dodging keeps attackers"in the dark", trying to follow the unpredictably changing mapping. They may hit a fewtimes but lose "precious" time before they are identified and stopped. Three dodging-based DoS defense algorithms are developed in this work. They are moreresource-efficient than state-of-the-art DoS detection and mitigation techniques. Honeybees combines channel hopping and error-correcting codes to achieve bandwidth-efficientand energy-efficient mitigation of jamming in multi-radio networks. In roaming honeypots, dodging enables the camouflaging of honeypots, or trap machines, as real servers,making it hard for attackers to locate and avoid the traps. Furthermore, shuffling requestsover servers opens up windows of opportunity, during which legitimate requests are serviced.Live baiting, efficiently identifies service-level DoS attackers by employing results fromthe group-testing theory, discovering defective members in a population using the minimumnumber of tests. The cost and benefit of the dodging algorithms are analyzed theoretically,in simulation, and using prototype experiments

    Power-Optimal Feedback-Based Random Spectrum Access for an Energy Harvesting Cognitive User

    Full text link
    In this paper, we study and analyze cognitive radio networks in which secondary users (SUs) are equipped with Energy Harvesting (EH) capability. We design a random spectrum sensing and access protocol for the SU that exploits the primary link's feedback and requires less average sensing time. Unlike previous works proposed earlier in literature, we do not assume perfect feedback. Instead, we take into account the more practical possibilities of overhearing unreliable feedback signals and accommodate spectrum sensing errors. Moreover, we assume an interference-based channel model where the receivers are equipped with multi-packet reception (MPR) capability. Furthermore, we perform power allocation at the SU with the objective of maximizing the secondary throughput under constraints that maintain certain quality-of-service (QoS) measures for the primary user (PU)

    Optimal Spectrum Access for a Rechargeable Cognitive Radio User Based on Energy Buffer State

    Full text link
    This paper investigates the maximum throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources, e.g., solar, wind and acoustic noise. We propose a probabilistic access strategy by the SU based on the number of packets at its energy queue. We investigate the effect of the energy arrival rate, the amount of energy per energy packet, and the capacity of the energy queue on the SU throughput under fading channels. Results reveal that the proposed access strategy can enhance the performance of the SU.Comment: arXiv admin note: text overlap with arXiv:1407.726

    On Spectrum Sharing Between Energy Harvesting Cognitive Radio Users and Primary Users

    Full text link
    This paper investigates the maximum secondary throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources and primary radio frequency (RF) transmissions. We propose a power allocation policy at the PU and analyze its effect on the throughput of both the PU and SU. Furthermore, we study the impact of the bursty arrivals at the PU on the energy harvested by the SU from RF transmissions. Moreover, we investigate the impact of the rate of energy harvesting from natural resources on the SU throughput. We assume fading channels and compute exact closed-form expressions for the energy harvested by the SU under fading. Results reveal that the proposed power allocation policy along with the implemented RF energy harvesting at the SU enhance the throughput of both primary and secondary links

    Metastatic neuroblastoma to the mandible in a 3-year-old boy : a case report

    Get PDF
    Although neuroblastoma is a relatively common malignancy of childhood and its dissemination to distant organs is often seen, metastasis to the mandible is rare. A 3-year-old boy which a mandibular soft tissue mass was the initial presenting symptom of disseminated neuroblastoma is reported. The results of biopsy were inconclusive and the differential diagnosis from the imaging studies included lymphoma, soft tissue sarcoma, and osteosarcoma. A metastatic work-up disclosed neuroblastoma of the adrenal gland origin with osseous and bone marrow metastases. Urinary catecolamines were also increased. Regarding the widespread features of the tumor and lack of adequate treatment at this stage of disease, a palliative chemotherapy was conducted, and the patient died one month after starting treatment. This case illustrates that neuroblastoma at a young age, with bone metastases and bone marrow involvement are predictive of the poor outcome of the disease. Therefore, detecting early stage metastasis is one of the essential factors for improving treatment of neuroblastoma patients
    corecore