15 research outputs found

    Market_based Framework for Mobile Surveillance Systems

    Get PDF
    The active surveillance of public and private sites is increasingly becoming a very important and critical issue. It is therefore, imperative to develop mobile surveillance systems to protect these sites. Modern surveillance systems encompass spatially distributed mobile and static sensors in order to provide effective monitoring of persistent and transient objects and events in a given Area Of Interest (AOI). The realization of the potential of mobile surveillance requires the solution of different challenging problems such as task allocation, mobile sensor deployment, multisensor management, cooperative object detection and tracking, decentralized data fusion, and interoperability and accessibility of system nodes. This thesis proposes a market-based framework that can be used to handle different problems of mobile surveillance systems. Task allocation and cooperative target-tracking are studied using the proposed framework as two challenging problems of mobile surveillance systems. These challenges are addressed individually and collectively

    カイコガ前部絹糸腺におけるエクジソン膜受容体の存在:生化学的分子生物学的研究

    Get PDF
    取得学位:博士(理学),学位授与番号:博甲第682号,学位授与年月日:平成16年9月30日,学位授与年:200

    Solubilization of the ecdysone binding protein from anterior silk gland cell membranes of the silkworm, bombyx mori

    Get PDF
    We previously provided preliminary evidence for the presence of a putative membrane ecdysone receptor (mEcR) anchored in the plasma membranes of anterior silk glands (ASGs) in Bombyx mori. This receptor may act in concert with the conventional EcR in 20E-dependent programmed cell death of these glands. We report here, for the first time, the solubilization of mEcR from ASG membranes using the zwitterionic detergent CHAPS in the presence of NaCl. Our results show by ligand binding assay that mEcR solubilized this way is functionally active and retains 75% of its native binding activity. We also defined experimental conditions that yielded protein/detergent complexes with partial binding activity, which makes it possible to purify the membrane-bound ecdysone binding protein. © 2007 Zoological Society of Japan

    Molecular Characterization, Developmental Expression and Immunolocalization of Clathrin Heavy Chain in the Ovary of the American Cockroach, Periplaneta Americana During Oogenesis

    Full text link
    Clathrin is the principal protein involved in receptor mediate endocytosis and the main component of the coated vesicles. It is composed of three identical clathrin heavy chains (CHC), each with an attached light chain. We characterized the deduced amino acid sequence of the partial cDNA clone of the American cockroach, Periplaneta americana (Pam) CHC. The analysis showed that this sequence is represented as multiple alpha helical repeats occurred in the arm region of the CHC and displayed a high level of identity and similarity to mosquitoes and Drosophila melanogaster CHCs. This is the first report on CHC from a hemimetabolous insect. The amplified CHC probe could hybridize two CHC transcripts in the current preparations, 6.3 kb and 7.3 kb. The Northern blot analysis confirmed that a 6.3 kb transcript is specifically expressed in ovarian tissues at high levels throughout the ovarian development, especially in previtellogenic ovaries (Days 1-4) but dropped during the vitellogenic period (days 5-7) and ultimately no transcript was detected in fully vitellogenic ovaries (days 9-13). Immunoblot analysis detected an ovary specific CHC protein of ~175 kDa that was present in previtellogenic ovaries on the day of female emergence and after initiation of vitellogenesis and onset of Vg uptake. Immunocytochemistry localized CHC protein to germ-line derived cells, oocytes, and revealed that CHC translation begins very early during oocyte differentiation in the germarium. The present work suggested a possible role for clathrin in the early fluid phase endocytosis (pinocytosis) in addition to its role in receptor-mediated endocytosis

    Molecular characterization, developmental expression and immunolocalization of clathrin heavy chain in the ovary of the American cockroach, Periplaneta americana during oogenesis

    Get PDF
    Clathrin is the principal protein involved in receptor mediate endocytosis and the main component of the coated vesicles. It is composed of three identical clathrin heavy chains (CHC), each with an attached light chain. We characterized the deduced amino acid sequence of the partial cDNA clone of the American cockroach, Periplaneta americana (Pam) CHC. The analysis showed that this sequence is represented as multiple alpha helical repeats occurred in the arm region of the CHC and displayed a high level of identity and similarity to mosquitoes and Drosophila melanogaster CHCs. This is the first report on CHC from a hemimetabolous insect. The amplified CHC probe could hybridize two CHC transcripts in the current preparations, 6.3 kb and 7.3 kb. The Northern blot analysis confirmed that a 6.3 kb transcript is specifically expressed in ovarian tissues at high levels throughout the ovarian development, especially in previtellogenic ovaries (Days 1-4) but dropped during the vitellogenic period (days 5-7) and ultimately no transcript was detected in fully vitellogenic ovaries (days 9-13). Immunoblot analysis detected an ovary specific CHC protein of ~175 kDa that was present in previtellogenic ovaries on the day of female emergence and after initiation of vitellogenesis and onset of Vg uptake. Immunocytochemistry localized CHC protein to germ-line derived cells, oocytes, and revealed that CHC translation begins very early during oocyte differentiation in the germarium. The present work suggested a possible role for clathrin in the early fluid phase endocytosis (pinocytosis) in addition to its role in receptor-mediated endocytosis

    Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats

    No full text
    In this study, 120 lactic acid bacterial strains from different fermented dairy products as well as 10 bacterial intestinal isolates were evaluated for in vitro and in vivo degradation of various food azo dyes. Of these isolates, lactic acid bacteria (LAB) strains 13 and 100 and the intestinal isolates Ent2 and Eco5 exhibited 96–98% degradation of the tested food azo dyes within 5–6 hours. High performance liquid chromatography mass spectra of sunset yellow (E110) and carmoisine (E122) anaerobic degradation products by the intestinal isolates showed that they were structurally related to toxic aromatic amines. For an in vivo study, eight groups of rats were treated for 90 days with either the food azo dyes or their degradation products. All groups were kept for a further 30 days as recovery period and then dissected at 120 days. Hematological, histopathological, and protein markers were assessed. Rats treated with either E110/E122 or their degradation products exhibited highly significant changes in red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and white blood cell count. In addition, alanine and aspartate aminotransferases, amylase, total bilirubin, blood urea nitrogen, creatinine, glucose, total protein, and globulins were significantly increased. Furthermore, marked histopathological alterations in the liver, kidney, spleen, and small intestine were observed. Significant decreases in inflammation and a noticeable improvement in the liver, kidney, spleen, and small intestine of rats treated with LAB and food azo dyes simultaneously were observed. Finally, these results provide a reliable basis for not only a better understanding of the histological and biochemical effects of food additives, but also for early diagnostics. In addition, LAB strains 13 and 100 may play an important role as potential probiotics in food and dairy technology as a probiotic lactic acid starter

    A rapid increase in cAMP in response to 20-hydroxyecdysone in the anterior silk glands of the silkworm, Bombyx mori

    Get PDF
    In the anterior silk glands (ASGs) of the silkworm, Bombyx mori, intracellular cAMP increases transiently to a very high level shortly after the hemolymph ecdysteroid peak in the prepupal period. In cultured ASGs obtained on the day of gut-purge, cAMP levels were increased by 20-hydroxy-ecdysone (20E), and this increase was enhanced by an inhibitor of phosphodiesterase, but was not affected by α-amanitin, indicating the 20E action may not be mediated via gene expression. The increase in cAMP occurred within 30 seconds of exposure to a physiological concentration of 20E (1 μM), and also by ponasterone A. Our findings indicate a nongenomic action of ecdysteroids in insects, which may be an additional mechanism by which this steroid hormone induces acute responses in tissues and cells. © 2006 Zoological Society of Japan
    corecore