13 research outputs found

    Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress

    Get PDF
    anax ginseng is an important cash crop in the Asian countries due to its pharmaceutical effects, however the plant is exposed to various abiotic stresses, lead to reduction of its quality. One of them is the Aluminum (Al) accumulation. Plant growth promoting bacteria which able to tolerate heavy metals has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas. In this study, twelve bacteria strains were isolated from rhizosphere of diseased Korean ginseng roots located in Gochang province, Republic of Korea and tested for their ability to grow in Al-embedded broth media. Out of them, four strains (Pseudomonas simiae N3, Pseudomonas fragi N8, Chryseobacterium polytrichastri N10, and Burkholderia ginsengiterrae N11-2) were able to grow. The strains could also show other plant growth promoting activities e.g. auxins and siderophores production and phosphate solubilization. P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 strains were able to support the growth of Arabidopsis thaliana stressed by Al while P. fragi N8 could not. Plants inoculated with P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 showed higher expression level of Al-stress related genes, AtAIP, AtALS3 and AtALMT1, compared to non-bacterized plants. Expression profiles of the genes reveal the induction of external mechanism of Al resistance by P. simiae N3 and B. ginsengiterrae N11-2 and internal mechanism by C. polytrichastri N10. Korean ginseng seedlings treated with these strains showed higher biomass, particularly the foliar part, higher chlorophyll content than non-bacterized Al-stressed seedlings. According to the present results, these strains can be used in the future for the cultivation of ginseng in Al-persisted locations

    Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil

    Get PDF
    Strain DCY85T and DCY85-1T, isolated from rhizosphere of ginseng, were rod-shaped, Gram-reaction-negative, strictly aerobic, catalase positive and oxidase negative. 16S rRNA gene sequence analysis revealed that strain DCY85T as well as DCY85-1T belonged to the genus Burkholderia and were closely related to Burkholderia fungorum KACC 12023T (98.1 and 98.0 % similarity, respectively). The major polar lipids of strain DCY85T and DCY85-1T were phosphatidylethanolamine, one unidentified aminolipid and two unidentified phospholipids. The major fatty acids of both strains are C16:0, C18:1ω7c and summed feature 3 (C16:1ω6c and/or C16:1ω7c). The predominant isoprenoid quinone of each strain DCY85T and DCY85-1T was ubiquinone (Q-8) and the G+C content of their genomic DNA was 66.0 and 59.4 mol%, respectively, which fulfill the characteristic range of the genus Burkholderia. The polyamine content of both DCY85T and DCY85-1T was putrescine. Although both DCY85T and DCY85-1T have highly similar 16S rRNA and identical RecA and gyrB sequences, they show differences in phenotypic and chemotaxonomic characteristics. DNA–DNA hybridization results proved the consideration of both strains as two different species. Based on the results from our polyphasic characterization, strain DCY85T and DCY85-1T are considered novel Burkholderia species for which the name Burkholderia ginsengiterrae sp. nov and Burkholderiapanaciterrae sp. nov are, respectively, proposed. An emended description of those strains is also proposed. DCY85T and DCY85-1T showed antagonistic activity against the common root rot pathogen of ginseng, Cylindrocarpon destructans. The proposed type strains are DCY85T (KCTC 42054T = JCM 19888T) and DCY85-1T (KCTC 42055T = JCM 19889T)

    Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng

    Get PDF
    A novel bacterial strain, DCY86T (=KCTC 42053T = JCM 19890T) was isolated from soil of a ginseng field in Yeoncheon province (38°04′00″N 126°57′00″E), Republic of Korea using a serial dilution method. Strain DCY86T was observed to be Gram-stain negative, strictly aerobic, to grow optimally at 25–30 °C, at pH 7–7.5 and on tryptic soya agar medium. The cells were found to be sensitive to ceftazidine and tetracycline. Based on 16S rRNA gene sequence comparisons, strain DCY86T was found to be most closely related to Cupriavidus basilensis LMG 18990T (98.48 %), Cupriavidus numazensis LMG 26411T (98.34 %), Cupriavidus pinatabonesis KCTC 22125T (98.34 %) and Cupriavidus laharis KCTC 22126T (98.00 %). The G+C content was determined to be 64.23 mol %. The only isoprenoid quinone detected in strain DCY86T was ubiquinone Q-8. The major polar lipids were identified as diphosphatidylglycerol, phosphtidylethanolamine, phosphatidylglycerol, unidentified aminophosphoglycolipids and unidentified phospholipids. The major fatty acids were identified as C16:0 summed feature 3 (C16:1 ω7c/ω6c and/or iso-C15 : 0 2-OH) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). These data support the affiliation of strain DCY86T to the genus Cupriavidus. Strain DCY86T was also found to be able to solubilize phosphate and produce siderophores. The results of physiological and biochemical tests enabled strain DCY86T to be differentiated genotypically and phenotypically from the recognized species of the genus Cupriaividus. Therefore, the novel isolate can be considered to represent a novel species, for which the name Cupriavidus yeoncheonense sp. nov. is proposed here. The type strain is DCY86T (=KCTC 42053T = JCM 19890T)

    Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium isolated from soil of a ginseng field

    Get PDF
    Strain DCY91T, a Gram-stain-negative, rod-shaped, aerobic, non-motile bacterium, was isolated from soil of ginseng field in Gyeonggi province, South Korea. Strain DCY91T shared the highest 16S rRNA gene sequence similarity with Sphingomonas mucosissima DSM 17494T (98.55 %), Sphingomonas dokdonensis KACC 17420T (98.11 %) and Sphingomonas xinjiangensis DSM 26736T (96.68 %). The strain DCY91T was found to able to grow best in trypticase soy agar at 28 °C, at pH 7 and at 0.5 % NaCl. Ubiquinone 10 was identified as the isoprenoid quinone. The major polar lipids were identified as sphingoglycolipid, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The major fatty acids of strain DCY91T were identified as unsaturated C18:1ω7c and saturated C16:0. The major polyamine content was sym-homospermidine. The DNA G + C content was determined to be 65.8 mol% (HPLC). After 6 days of incubation, strain DCY91T produced 9.64 ± 1.73 and 33.73 ± 4.66 µg/ml indole-3-acetic acid, using media without l-tryptophan and supplemented with l-tryptophan, respectively. Strain DCY91T was also weakly solubilized phosphate and produced siderophores. On the basis of the phenotypic characteristics, genotypic analysis and chemotaxonomic characteristics, strain DCY91T is considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas panaciterrae sp. nov. is proposed. The type strain is DCY91T (=KCTC 42346T =JCM 30807T)

    Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms

    No full text
    Cylindrocarpon destructans/Ilyonectria radicicola is thought to cause both rusty symptom and root-rot disease of American and Korean ginseng. Root-rot disease poses a more serious threat to ginseng roots than rusty symptoms, which we argue result from the plant defense response to pathogen attack. Therefore, strains causing rotten root are characterized as more aggressive than strains causing rusty symptoms. In this review, we state 1- the molecular evidence indicating that the root-rot causing strains are genetically distinct considering them as a separate species of Ilyonectria, namely I. mors-panacis and 2- the physiological and biochemical differences between the weakly and highly aggressive species as well as those between rusty and rotten ginseng plants. Eventually, we postulated that rusty symptom occurs on ginseng roots due to incompatible interactions with the weakly aggressive species of Ilyonectria, by the established iron-phenolic compound complexes while root-rot is developed by I. mors-panacis infection due to the production of high quantities of hydrolytic and oxidative fungal enzymes which destroy the plant defensive barriers, in parallel with the pathogen growth stimulation by utilizing the available iron. Furthermore, we highlight future areas for study that will help elucidate the complete mechanism of root-rot disease development

    Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation

    No full text
    Background: Korean ginseng is an important cash crop in Asian countries. However, plant yield is reduced by pathogens. Among the Ilyonectria radicicola-species complex, I. mors-panacis is responsible for root-rot and replant failure of ginseng in Asia. The development of new methods to reveal the existence of the pathogen before cultivation is started is essential. Therefore, a quantitative real-time polymerase chain reaction method was developed to detect and quantify the pathogen in ginseng soils. Methods: In this study, a species-specific histone H3 primer set was developed for the quantification of I. mors-panacis. The primer set was used on DNA from other microbes to evaluate its sensitivity and selectivity for I. mors-panacis DNA. Sterilized soil samples artificially infected with the pathogen at different concentrations were used to evaluate the ability of the primer set to detect the pathogen population in the soil DNA. Finally, the pathogen was quantified in many natural soil samples. Results: The designed primer set was found to be sensitive and selective for I. mors-panacis DNA. In artificially infected sterilized soil samples, using quantitative real-time polymerase chain reaction the estimated amount of template was positively correlated with the pathogen concentration in soil samples (R2 = 0.95), disease severity index (R2 = 0.99), and colony-forming units (R2 = 0.87). In natural soils, the pathogen was recorded in most fields producing bad yields at a range of 5.82 ± 2.35 pg/g to 892.34 ± 103.70 pg/g of soil. Conclusion: According to these results, the proposed primer set is applicable for estimating soil quality before ginseng cultivation. This will contribute to disease management and crop protection in the future. Keywords: ginseng, Ilyonectria mors-panacis, qRT-PCR, species-specific histone H

    Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng

    No full text
    Pharmacologically active stem of the oriental herbal adaptogen, Siberian ginseng, was employed for the ecofriendly synthesis of Siberian ginseng silver nanoparticles (Sg-AgNPs) and Siberian ginseng gold nanoparticles (Sg-AuNPs). First, for metabolic characterization of the sample, liquid chromatography-tandem mass spectrometry analysis (indicated the presence of eleutherosides A and E), total phenol content, and total reducing sugar were analyzed. Second, the water extract of the sample mediated the biological synthesis of both Sg-AgNPs and Sg-AuNPs that were crystalline face-centered cubical structures with a Z-average hydrodynamic diameter of 126 and 189 nm, respectively. Moreover, Fourier transform infrared analysis indicated that proteins and aromatic hydrocarbons play a key role in the formation and stabilization of Sg-AgNPs, whereas phenolic compounds accounted for the synthesis and stability of Sg-AuNPs. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) assay determined that Sg-AgNPs conferred strong cytotoxicity against MCF7 (human breast cancer cell line) and was only slightly toxic to HaCaT (human keratinocyte cell line) at 10 µg·mL . However, Sg-AuNPs did not display cytotoxic effects against both of the cell lines. The disc diffusion assay indicated a dose-dependent increase in the zone of inhibition of Staphylococcus aureus (ATCC 6538), Bacillus anthracis (NCTC 10340), Vibrioparahaemolyticus (ATCC 33844), and Escherichia coli (BL21) treated with Sg-AgNPs, whereas Sg-AuNPs did not show inhibitory activity. In addition, the 2,2-diphenyl-1-picrylhydrazyl assay demonstrated that both Sg-AgNPs and Sg-AuNPs possess strong antioxidant activity. To the best of our knowledge, this is the first report unraveling the potential of Eleutherococcus senticosus for silver and gold nanoparticle synthesis along with its biological applications, which in turn would promote widespread usage of the endemic Siberian ginseng
    corecore